Surface defect detection with predictive models in the galvanizing process

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorPreciado Arreola, José Luis
dc.contributor.authorPérez Benítez, Baruc Emet
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberTercero Gómez, Víctor Gustavo
dc.contributor.committeememberChee González, Carlos Arnoldo
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorPEREZ BENITEZ, BARUC EMET; 792305
dc.date.accessioned2021-11-10T23:33:30Z
dc.date.available2021-11-10T23:33:30Z
dc.date.created2020-12-04
dc.date.issued2020-12-04
dc.description.abstractHot-dip galvanizing is a widely used process worldwide to provide metal products with a protective layer that enhances its corrosion resistance. The effectiveness of such layer relies on the uniformity of the coverage, thus, any alteration in the galvanizing layer may be considered as a defect. These defects are catalogued as surface defects where two groups are identified: Bare Spots and Dross-Derived defects. Currently, these defects are detected at the end of the line where no preventive actions can be performed. Consequently, the surface defects’ occurrence is not avoided, increasing in turn the expenses of the company. For that reason, a project oriented to these defects’ prediction is proposed. This project consists on a set of predictive models, which are tested to be able to predict these defects’ occurrence at an early stage that let the people of the galvanizing line to design and unleash preventive actions that could alleviate the surface defects’ incidents. Four models are studied: Stepwise Logistic Regression, Random Forest Classifier, Gradient Boosting Classifier, and Low FNR Low FPR Random Forest Classifier (LFNR-LFPR RFC) ensemble. LFNR-LFPR RFC is a custom-made multi-objective ensemble designed in this project, which basic learners are two Random Forest Classifiers. To test the models’ performance, the False Negative Rate (FNR) and False Positive Rate (FPR) scores are employed, where the acceptance criteria is to at most have a 15% of FNR and a 25% FPR. From the models tested, LFNR-LFPR RFC was able to outperform the others while achieving FNR and FPR scores under the acceptance criteria for most of the studied cases (two out of three for Bare Spots and one out of two for Dross-Derived defects). Furthermore, the importance of the variables selected for the LFNR-LFPR RFC model was evaluated. As a result, variables from different sources, such as the galvanizing line per se, the chemistry of the coil and from upstream processes, were obtained. In turn, these lists of variables can provide insights on how to design preventive actions that could decrease the surface defects’ occurrence. Finally, the economic impact of the defects and the predictive models is assessed, where, according to the LFNR-LFPR RFC ensemble’s results, savings are possible.es_MX
dc.description.degreeMaestro en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3315||331507es_MX
dc.identifier.citationPérez-Benítez, B.E. (2020). Surface defect detection with predictive models in the galvanizing process (Tesis Maestría). Tecnologico de Monterrey, Monterrey Nuevo Leon , México. Recuperado de: https://hdl.handle.net/11285/641116es_MX
dc.identifier.cvu792305es_MX
dc.identifier.scopusid57216731439es_MX
dc.identifier.urihttps://hdl.handle.net/11285/641116
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-12-04
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA METALÚRGICA::PRODUCTOS METALÚRGICOS (ESPECIALES)es_MX
dc.subject.keywordGalvanizinges_MX
dc.subject.keywordSurface defectes_MX
dc.subject.keywordRandom Forestes_MX
dc.subject.keywordEnsemble modeles_MX
dc.subject.lcshTechnologyes_MX
dc.titleSurface defect detection with predictive models in the galvanizing processes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
PerezBenitez_TesisMaestriaPDFA.pdf
Size:
3.46 MB
Format:
Adobe Portable Document Format
Description:
Tesis de Maestría
Loading...
Thumbnail Image
Name:
PerezBenitez_ActadeGradoPDFA.pdf
Size:
486.15 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
Carta Autorización Tesis.pdf
Size:
5.77 MB
Format:
Adobe Portable Document Format
Description:
Carta autorización tesis

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia