Predicting drug Responses in cancer cells using genomic features and machine learning

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTreviño Alvarado, Víctor Manuel
dc.contributor.authorEvans Trejo, Cody Eduardo
dc.contributor.catalogerilquioes_MX
dc.contributor.committeememberTamez Peña, José
dc.contributor.committeememberMartínez Torteya, Antonio
dc.contributor.departmentEscuela de ingeniería y cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorMartínez Ledesma, Juan Emmanuel
dc.date.accepted2020-05
dc.date.accessioned2021-10-07T17:45:00Z
dc.date.available2021-10-07T17:45:00Z
dc.date.created2020
dc.date.issued2020-05
dc.descriptionhttps://orcid.org/0000-0002-7472-9844es_MX
dc.description.abstractThis document presents an analysis for the prediction drug responses in cancer cells using cancer genomic features and machine learning for the Master’s Degree in Computational Sciences at Instituto Tecnologico y de Estudios Superiores de Monterrey. Cancer is a genetic disease characterized by the progressive accumulation of mutations. There are several genomic features involved in oncogenesis such: gene mutation, copy number, expression, and epigenetic alterations. These features vary depending the person and type of cancer, making it difficult to determine whether a drug will response successfully for each specific case. Recently, two large-scale pharmacogenomic studies screened multiple anticancer drugs on over 1000 cell lines in an effort to elucidate the response mechanism of anticancer drugs. Based on this data, we proposed a drug-response prediction framework that uses gene expression, methylation, copy number, mutation, protein expression features and drug sensitivity data from the Cancer Cell Line Encyclopedia (CCLE) database. For this we compare the performance of several algorithms such as Random Forest, Support Vector Machine, Elastic-Net and Extreme Gradient Boosting Tree (XGBoost). Robustness of our model was validated by cross-validation. The dataset of RNAseq using XGBoost obtain the highest average accuracy for individual datasets. Our unified model achieved good cross validation performance for most drugs in the Cancer Cell Line Encyclopedia (≥85 % accuracy).These results suggest that drug response could be effectively predicted from genomic features using a battery of machine learning algorithm. Our model could be applied to predict drug response for certain drugs and potentially could play a complementary role in personalized medicine.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationEvans Trejo, C. E. (2020). Predicting drug Responses in cancer cells using genomic features and machine learning (Master's Thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: 7||33||3314||331499es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-4241-8985es_MX
dc.identifier.urihttps://hdl.handle.net/11285/640170
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationNational Council of Science and Technology (CONACYT)es_MX
dc.relation.impreso2020-06-08
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordMachine learninges_MX
dc.subject.keywordCanceres_MX
dc.subject.keywordDrug Responsees_MX
dc.subject.lcshSciencees_MX
dc.titlePredicting drug Responses in cancer cells using genomic features and machine learninges_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
CodyEvans_ITESM_MCC_MasterThesis_signed (2).pdf
Size:
2.91 MB
Format:
Adobe Portable Document Format
Description:
Tesis de maestría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis (2)-signed.pdf
Size:
432.91 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia