Detection of Violent Behavior in Open Environments Using Pose Estimation and Neural Networks

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTerashima Marín, Hugo
dc.contributor.authorChong Loo, Kevin Brian Kwan
dc.contributor.catalogertolmquevedo, emipsanchezes_MX
dc.contributor.committeememberConant Pablos, Santiago Enrique
dc.contributor.departmentEscuela de Ingeniería y Cienciaes_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorTERASHIMA MARIN, HUGO; 65879
dc.date.accessioned2022-02-05T02:47:35Z
dc.date.available2022-02-05T02:47:35Z
dc.date.created2020-11-03
dc.description0000-0002-5320-0773es_MX
dc.description.abstractPeople’s safety and security have always been an issue to attend. With the coming of techno- logical advances, part of it has been used to improve safeguards, though other aspects, without precautions, have made people even more vulnerable. People can get their sensitive data stolen or become victims of transaction fraud. These may be crimes done without physical interac- tion, but felonies with physical violence still exist. Some solutions for pedestrian safety are guards, police cars patrolling, sensors and security cameras. Nonetheless, these methods only react when the crime is happening or, even more critical, when it has already occurred, and the damage has been done. Therefore, numerous methods have been implemented using Arti- ficial Intelligence in order to solve this problem. Many approaches to detect violent behavior and action recognition rely on 3D convolutional neural networks (3D CNNs), spatial tempo- ral models, long short term memory networks, pose estimation among other implementations. However, in the current state of the art, how these approaches are used do not work perfectly and are not adapted to an uncontrolled environment. Therefore, a significant contribution from this work was the development of a new solu- tion model that is able to detect violent behavior. This approach focuses on using pedestrian detection, tracking, pose estimation and neural networks to predict pedestrian behavior in video frames. This method uses a time window frame to extract joint angles, given by the pose estimation algorithm, as features for classifying behavior. At the moment of developing this thesis project, there were not many databases with violent behavior videos. The ones that existed were low quality; cluttered were pedestrians cannot be seen clearly, and with unfixed camera angles. Consequently, another important contribution of this work was creating a new database, Kranok-NV, with a total of 3,683 normal and violent videos. This database was used to train and test the solution model. For the evaluation, a protocol was designed using 10-fold cross- validation. With the implemented solution model, accuracy of more than 98% was achieved on the Kranok-NV database. This approach surpassed the performance of state of the art methods for violence detection and action recognition in the developed database. Though this new solution model is able to detect violent and normal behavior, it can be easily extended to classify more types of behaviors. Further work requires to test this approach in emerging databases of videos and optimize specific areas of the solution model. Additionally, the contributions of this work can aid in the development of new approaches.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3399es_MX
dc.identificator7||33||3304||120325es_MX
dc.identifier.citationChong Loo, K. B. K. (2020). Detection of Violent Behavior in Open Environments Using Pose Estimation and Neural Networks. (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. https://hdl.handle.net/11285/644475es_MX
dc.identifier.cvu917892es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5089-7835es_MX
dc.identifier.urihttps://hdl.handle.net/11285/644475
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-11-11
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICASes_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::DISEÑO DE SISTEMAS SENSORESes_MX
dc.subject.keywordViolent Behavior Detectiones_MX
dc.subject.keywordPose Estimationes_MX
dc.subject.keywordNeural Networkses_MX
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordSurveillancees_MX
dc.subject.keywordArtificial Intelligencees_MX
dc.subject.lcshTechnologyes_MX
dc.titleDetection of Violent Behavior in Open Environments Using Pose Estimation and Neural Networkses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
KwanChongLoo_TesisdeMaestriaPDFA.pdf
Size:
6.41 MB
Format:
Adobe Portable Document Format
Description:
Tesis de Maestría
Loading...
Thumbnail Image
Name:
KwamChong_ActadeGradoyDeclaraciondeAutoriaPDFA.pdf
Size:
261.1 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoria
Loading...
Thumbnail Image
Name:
Carta de Autorización.pdf
Size:
124.61 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia