Harnessing open language models: a systematic literature review unleashing AI's potential for a smarter future

dc.contributor.affiliationhttps://ror.org/03ayjn504es_MX
dc.contributor.authorGarcía-López I.M., Ramirez-Montoya M.S., Molina-Espinosa J.M.
dc.date.accessioned2024-10-16T01:38:45Z
dc.date.available2024-10-16T01:38:45Z
dc.date.issued2025-01-01
dc.description.abstractThis study provides a systematic literature review (SLR) on Open Large Language Models (OLLM), which are large-scale natural language processing (NLP) models with accessible source code, configuration, and training data for the community. Recent advances in supervised and unsupervised learning techniques have improved the accuracy and contextual capabilities of OLLMs, enabling advanced applications in conversational interaction and long-text analysis. This research explored the applications and socioeconomic impacts of OLLMs in various industries, such as healthcare, education, and business management, demonstrating how these models optimize the efficiency and personalization of different processes. The study also addresses the ethical and operational challenges associated with OLLMs, such as bias management, data privacy and security, decision-making transparency, and technological dependency. Strategies are proposed to mitigate these issues, including regular ethics audits and the adoption of explainable AI frameworks. Finally, the study emphasizes the importance of maintaining a balance between OLLMs and human skills, the need for robust governance frameworks to ensure the ethical and legal operation of these models, and the promotion of continuous innovation to expand their capabilities for a positive and lasting impact on society.es_MX
dc.format.mediumTextoes_MX
dc.identificator4es_MX
dc.identificator58es_MX
dc.identificator5801es_MX
dc.identifier.citationGarcía-López I.M., Ramirez-Montoya M.S., Molina-Espinosa J.M. (2024). Harnessing Open Language Models: A Systematic Literature Review Unleashing AI's Potential for a Smarter Future. In Proceedings IFE Conference (IFE 2025). Monterrey, Mexico.es_MX
dc.identifier.journalProceedings IEEE Xplore, IFE Conference (IFE 2025)es_MX
dc.identifier.urihttps://hdl.handle.net/11285/698094
dc.language.isoenges_MX
dc.publisherIEEE Xplorees_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.relation.urlhttps://ciie.mx/en/es_MX
dc.rightsembargoedAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subjectHUMANIDADES Y CIENCIAS DE LA CONDUCTAes_MX
dc.subject.countryMéxico / Mexicoes_MX
dc.subject.keywordhigher education
dc.subject.keywordeducational innovation
dc.subject.keywordopen large language models
dc.subject.keywordartificial intelligence
dc.subject.keywordR4C§TE
dc.subject.lcshEducationes_MX
dc.titleHarnessing open language models: a systematic literature review unleashing AI's potential for a smarter future
dc.typeConferencia

Files

Collections

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia