A comparison of control schemes for an articulated 2 degree-of-freedom robot manipulator optimized via genetic algorithms

dc.contributor.authorArriaga González, Jonathan
dc.contributor.committeememberSoto, Rogelioes
dc.contributor.committeememberMeza, José Luises
dc.contributor.committeememberRodríguez, Ernestoes
dc.contributor.departmentTecnológico de Monterrey, Campus Monterreyen
dc.creatorArriaga González, Jonathan; 268989
dc.date.accessioned2015-08-17T10:39:17Zen
dc.date.available2015-08-17T10:39:17Zen
dc.date.issued2010-05-01
dc.description.abstractRobot manipulators play an important role in actual industrial processes. The trajectory following of robot manipulators is a non-linear problem that still requires much research [34]. This research work focuses on the control of the dynamics of an articulated robot manipulator. A 2 degree-of-freedom (DOF) articulated robot manipulator is simulated, each of the two links of the robot having its respective controller. Two different kind of control objectives for the robot's links are considered, position control and velocity control. Four control schemes for the robot's dynamics were selected. For position, a PID Controller [24] and a Fuzzy Self-tuning (FST) PID Controller [14] are considered. On the other hand, for velocity control the FST PD+ Controller [35] and the Fuzzy Sliding Mode (FSM) Controller [12, 16, 28] were chosen. Controller's performance and robustness in relevant tasks are evaluated and compared in order to determine which control scheme fits best for each task. Empirical adjustment of most controller's parameters always depend on the time and tests invested in tuning the controller, it is time consuming and subject to human error. As a fair comparison is intended, controller's parameters are optimized via Genetic Algorithms [22]. With this method, the tuning of parameters is not subtle to human error and the comparison can avoid possible erroneous conclusions. Optimization of parameters of all controllers was carried out successfully. Pa-rameters set by the GA are interpreted and show several details about the structure of the considered controllers. Performance comparison of controllers is discussed and conclusions about the complexity of controllers and its equivalence when performing some tasks is presented.
dc.identificator7
dc.identificator33
dc.identificator3304
dc.identificator120302
dc.identifier.urihttp://hdl.handle.net/11285/570216en
dc.languageeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInvestigadoreses_MX
dc.relationEstudianteses_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.subject.classificationArea::INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOSes_MX
dc.titleA comparison of control schemes for an articulated 2 degree-of-freedom robot manipulator optimized via genetic algorithms
dc.typeTesis de maestría
html.description.abstractRobot manipulators play an important role in actual industrial processes. The trajectory following of robot manipulators is a non-linear problem that still requires much research [34]. This research work focuses on the control of the dynamics of an articulated robot manipulator. A 2 degree-of-freedom (DOF) articulated robot manipulator is simulated, each of the two links of the robot having its respective controller. Two different kind of control objectives for the robot's links are considered, position control and velocity control. Four control schemes for the robot's dynamics were selected. For position, a PID Controller [24] and a Fuzzy Self-tuning (FST) PID Controller [14] are considered. On the other hand, for velocity control the FST PD+ Controller [35] and the Fuzzy Sliding Mode (FSM) Controller [12, 16, 28] were chosen. Controller's performance and robustness in relevant tasks are evaluated and compared in order to determine which control scheme fits best for each task. Empirical adjustment of most controller's parameters always depend on the time and tests invested in tuning the controller, it is time consuming and subject to human error. As a fair comparison is intended, controller's parameters are optimized via Genetic Algorithms [22]. With this method, the tuning of parameters is not subtle to human error and the comparison can avoid possible erroneous conclusions. Optimization of parameters of all controllers was carried out successfully. Pa-rameters set by the GA are interpreted and show several details about the structure of the considered controllers. Performance comparison of controllers is discussed and conclusions about the complexity of controllers and its equivalence when performing some tasks is presented.
refterms.dateFOA2018-03-24T18:31:53Z
refterms.dateFOA2018-03-24T18:31:53Z

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
DocsTec_11139_1.pdf
Size:
85.62 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
ArriagaGonzalez_TesisMaestriaPDFA.pdf
Size:
4.1 MB
Format:
Adobe Portable Document Format
Description:
Tesis de maestría
Loading...
Thumbnail Image
Name:
ArriagaGonzalez_HojaDeFirmasPDFA.pdf
Size:
66.17 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia