Analyzing fan avidity for soccer prediction

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.authorMiranda Peña, Ana Clarissa
dc.contributor.catalogeremijzarate/puemcuervoes_MX
dc.contributor.committeememberHernandez Gress, Neil
dc.contributor.committeememberAlvarado Uribe, Joanna
dc.contributor.departmentEscuela de Ingeniería en Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHervert Escobar, Laura
dc.creatorGONZALEZ MENDOZA, MIGUEL; 123361
dc.date.accepted2022-03-30
dc.date.accessioned2023-05-19T17:35:11Z
dc.date.available2023-05-19T17:35:11Z
dc.date.issued2021-09
dc.description.abstractBeyond being a sport, soccer has built up communities. Fans showing interest, involvement, passion and loyalty to a particular team, something known as Fan Avidity, have strengthen the sport business market. Social Networks have made incredibly easy to identify fans’commitment and expertise. Among the corpus of sport analysis, plenty of posts with a well substantiated opinion on team’s performance and reliability are wasted. Based on graph theory, social networks can be seen as a set of interconnected users with a weighted influence on its edges. Evaluating the spread influence from fans' posts retrieved from Twitter could serve as a metric for identifying fans’ intensity, if adding sentiment classification, then it is possible to score Fan Avidity. Previous work attempts to engineer new key performance indicators or apply machine learning techniques for identifying the best existing indicators, however, there is limited research on sentiment analysis. In order to achieve the Master's Degree in Computer Science, this thesis aims to strengthen a machine learning model that applies polarity and sentiment analysis on tweets, as well as discovering factors thought to be relevant on a soccer match. The final goal is to achieve a flexible mechanism which automatizes the process of gathering data before a match, with the main objective of quantifying credit on fans' sentiment along with historical factors, while evaluating soccer prediction. The left alone sentiments' model could accomplish independence from the type of tournament, league or even sport.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304es_MX
dc.identifier.citationMiranda Peña, C. (2022). Analyzing fan avidity for soccer prediction (Unpublished master's thesis). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de:es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-8411-5830es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650695
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORESes_MX
dc.subject.keywordSports Analyticses_MX
dc.subject.keywordSentiment Analysises_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordSoccer Forecastes_MX
dc.subject.keywordWisdom of the Crowdses_MX
dc.subject.keywordInformation Retrievales_MX
dc.subject.lcshTechnologyes_MX
dc.titleAnalyzing fan avidity for soccer predictiones_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Thesis_Fan_Avidity.pdf
Size:
6.25 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
thesisFanAvidity_21jun22.pdf
Size:
353.76 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
declaracion acuerdo.pdf
Size:
1.39 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia