Contrast pattern-based classification on sentiment features for detecting people with mental disorders on social media

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorLoyola-González, Octavio
dc.contributor.authorGallegos Salazar, Leslie Marjorie
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.departmentSchool of Engineering and Sciencees_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorMedina-Pérez, Miguel Angel
dc.creatorLOYOLA GONZALEZ, OCTAVIO; 553351
dc.date.accepted2021-07-29
dc.date.accessioned2021-10-09T04:22:35Z
dc.date.available2021-10-09T04:22:35Z
dc.date.created2021-06-22
dc.date.issued2021-06-22
dc.descriptionhttps://orcid.org/0000-0002-6910-5922es_MX
dc.description.abstractMental disorders are a global problem that widely affects different segments of the population. Mental disorders present consequences in the life of those suffering from them as they can have difficulties performing daily tasks normally. However, consequences in the economy, society, human rights, and cultural scope are also present as it is a problem that has been growing for a long time. Diagnosis and treatment are difficult to obtain as there are not enough specialists on the matter, and mental health is not yet a common topic among the population. Specialists in varied areas have proposed multiple solutions for the detection of the risk of depression; the computer science field has proposed some, based on language use and the data obtained through social media. Those solutions are mainly focused on objective features like n-grams and lexicons. We propose a contrast pattern-based classifier for detecting depression by using a new data representation based only on sentiment and emotion analysis extracted from post on social networks. The representation contains 28 different features which include information on sentiment, emotion, polarity, sarcasm, and other subjective information of the text. We then used a classifier that has not been used before in the state-of-the-art and obtained an AUC between 0.71 and 0.72. Finally we reproduced state-of-the-art models and statistically compared them with the result of the proposed model. The results show no significant statistical difference with a reproduction of the models found in the state-of-the-art. Furthermore, with the classifier used we were able to provide an explanation close to the language of an expert on the decision of the classifier.es_MX
dc.description.degreeMaestra en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationGallegos Salazar, L. M. (2021). Contrast pattern-based classification on sentiment features for detecting people with mental disorders on social media. (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/640271es_MX
dc.identifier.cvu1010773es_MX
dc.identifier.orcidhttps://orcid.org /0000-0003-0654-7130es_MX
dc.identifier.urihttps://hdl.handle.net/11285/640271
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordDepression Detectiones_MX
dc.subject.keywordSentiment Analysises_MX
dc.subject.keywordNatural Language Processinges_MX
dc.subject.keywordSocial Mediaes_MX
dc.subject.lcshTechnologyes_MX
dc.titleContrast pattern-based classification on sentiment features for detecting people with mental disorders on social mediaes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
GallegosSalazar_TesisMaestriaPDFA.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
GallegosSalazar_ActadeGradoyDeclaracionAutoriaPDFA.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
carta autorización0001.pdf
Size:
576.64 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia