Development of robotic platform for biomechanical simulation of lower limb support under reduced gravity: design and validation

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.audience.educationlevelEmpresas/Companies
dc.contributor.advisorChairez Oria, Jorge Isaac
dc.contributor.authorMeza Flores, Carlos Joaquin
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberGarcía González, Alejandro
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorBello Robles, Juan Carlos
dc.date.accessioned2025-07-19T21:29:34Z
dc.date.embargoenddate2027-07-19
dc.date.issued2025-06
dc.description.abstractAs humanity prepares for long-duration missions to the Moon, Mars, and beyond, the need to understand how altered gravitational environments affect the human body has never been more urgent. One of the primary physiological systems impacted by these conditions is the musculoskeletal system, which undergoes substantial adaptation in reduced gravity, often leading to muscle atrophy, bone density loss, and changes in motor control. These challenges not only affect astronaut performance in space but also pose significant rehabilitation demands upon return to Earth. Consequently, there is a growing demand for advanced experimental platforms that can simulate partial gravity on Earth for the purpose of studying locomotion, muscle activation, and biomechanical adaptation. This thesis addresses that need by presenting the design, development, implementation, and evaluation of a novel dual Stewart platform robotic system specifically engineered to simulate reduced gravity environments for biomechanical experimentation.At the core of the research is a dual parallel manipulator configuration, known as a dual Stewart platform, which provides high-fidelity control over six degrees of freedom for each of its two stages. This setup enables the simulation of complex support and perturbation forces typically experienced during gait in altered gravity. The upper platform serves as the primary interface for subject interaction, capable of supporting a test subject’s lower limbs, while the lower platform is used to simulate ground reaction forces with precise control.A significant contribution of this work is the development of a robust embedded control architec- ture designed to manage the dynamic interaction between the user and the robotic system. The control framework employs a super-twisting sliding-mode control (ST-SMC) algorithm with state-dependent gain adaptation. This approach ensures robust and precise trajectory tracking of the platform’s end- effector, even in external disturbances such as user motion or force feedback. The controller was rig- orously validated through both simulation and experimental trials, demonstrating its superior stability and performance over conventional PID or linear feedback controllers, particularly in highly nonlinear operating conditions. To complement the mechanical and control systems, a multi-channel surface electromyography (sEMG) system was developed and integrated into the platform. This circuit was custom-designed to capture real-time muscle activation signals from multiple lower-limb muscle groups, providing syn- chronized neuromuscular data during locomotion trials. The sEMG system enables high-resolution monitoring of muscle recruitment patterns, allowing researchers to study how gravitational changes af- fect neuromuscular coordination and effort during walking or balance tasks. The integration of sEMG data with motion control feedback creates a powerful experimental tool that bridges the gap between kinematic performance and physiological response.Experimental validation of the complete system was conducted using simulated gait patterns. Preliminary results demonstrated the system’s capacity to reproduce biomechanically plausible motion trajectories and consistent sEMG activation profiles corresponding to expected changes in muscle load and coordination. These findings validate the platform’s functionality as a reliable testbed for studying locomotion under variable gravity conditions.Overall, this thesis presents a novel, multi-disciplinary approach that merges robotics, control theory, biomechanics, and neurophysiology into a single integrated system. The platform has potential applications in astronaut training, rehabilitation engineering, and human performance research.
dc.description.degreeMaster of Science in Engineering
dc.format.mediumTexto
dc.identificator331110
dc.identificator331101
dc.identificator241118
dc.identificator241110
dc.identificator241111
dc.identificator329999
dc.identifier.citationMeza Flores C. J. (2025). Development of robotic platform for biomechanical simulation of lower limb support under reduced gravity: design and validation [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey.
dc.identifier.orcidhttps://orcid.org/0009-0005-2477-235X
dc.identifier.urihttps://hdl.handle.net/11285/703870
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationConsejo Nacional de Ciencia y Tecnología (CONACYT)
dc.relation.isFormatOfacceptedVersion
dc.rightsembargoedAccess
dc.rights.embargoreasonPublicación de artículos.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::INSTRUMENTOS MÉDICOS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LA INSTRUMENTACIÓN::TECNOLOGÍA DE LA AUTOMATIZACIÓN
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::BIOLOGÍA HUMANA::FISIOLOGÍA DEL MOVIMIENTO
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::BIOLOGÍA HUMANA::FISIOLOGÍA DEL MÚSCULO
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::BIOLOGÍA HUMANA::NEUROFISIOLOGÍA
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::OTRAS ESPECIALIDADES MÉDICAS::OTRAS
dc.subject.keywordSpace medicine
dc.subject.keywordReduced gravity simulator
dc.subject.keywordGait simulator
dc.subject.keywordStewart platform
dc.subject.keywordMuscle adaptation
dc.subject.lcshTechnology
dc.titleDevelopment of robotic platform for biomechanical simulation of lower limb support under reduced gravity: design and validation
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
MezaFlores_TesisMaestria_pdfa.pdf
Size:
16.38 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
MezaFlores_ActaGradoDeclaraciónAutoria_pdfa.pdf
Size:
408.39 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
MezaFlores_CartaAutorizacio_pdf.pdf
Size:
185.31 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia