Front-End modeling for emotional state recognition

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorNolazco Flores, Juan Arturo
dc.contributor.authorVelázquez Flores, Oliver Alejandro
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberde la Cueva Hernández, Víctor Manuel
dc.contributor.committeememberGutiérrez Rodríguez, Andrés Eduardo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2021-12-02
dc.date.accessioned2022-05-26T19:42:23Z
dc.date.available2022-05-26T19:42:23Z
dc.date.issued2021-12-02
dc.descriptionhttps://orcid.org/0000-0002-4187-9352es_MX
dc.description.abstractMorphological biometrics have proved to be important contributors to e-security and e-health alike. One of its subdivisions, behavioral biometrics, focuses on understanding an individual based on several activities, in this case, a user with drawing and handwritten tasks. Following up the EMOTHAW methodology, this work focuses on extracting and generating new features from the original raw attributes of the aforementioned database. These techniques range from signal processing, physics, and statistics from which important feature vectors and models are created. The signal processing techniques focuses on calculating the logarithmic energy of a signal and then generate both the spectral and cepstral domains to create new numerical features for the resulting vector. In the physics department, traditional kinematic variables are calculated from the position of each task, and lastly the statistical features includes momentum, descriptive statistics, and the different means available in the literature (arithmetic, harmonic, etc.). Furthermore, the implementation of a combined dimensionality reduction (PCA) and feature selection (a novel correlation-based filtering algorithm) pipeline methodology is key for the continuous improvement of the results presented in this research thesis project, going from 60.5 - 71.6 % to 100% accuracy on a binary problem, and reaching accuracy of 82.45% in a ternary problem. This was accomplished by generating synthetic observations to compensate the imbalance distribution of classes intrinsic to health databases with added Gaussian White Noise to a sample number of real observations. Finally, by implementing a Machine Learning frame of several classification algorithms with the library H2O, a considerable testing efficiency was reached, guarantying the best performance.es_MX
dc.description.degreeMaster of Science in Computer Scienceses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationVelázquez Flores, O. A. (2021). Front-End modeling for emotional state recognition [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-8853-1233es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648403
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordEmotional Stateses_MX
dc.subject.keywordFeature Extractiones_MX
dc.subject.keywordFeature Selectiones_MX
dc.subject.keywordSignal Processing Techniqueses_MX
dc.subject.keywordAuto Machine Learninges_MX
dc.subject.lcshSciencees_MX
dc.titleFront-End modeling for emotional state recognitiones_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Tesis_OliverAlejandroVelazquezFlores.pdf
Size:
2.22 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON-firmada.pdf
Size:
172.87 KB
Format:
Adobe Portable Document Format
Description:
Carta de Derechos
Loading...
Thumbnail Image
Name:
02_Firmas_Oliver_Thesis_completa_FIRMADO.pdf
Size:
157.77 KB
Format:
Adobe Portable Document Format
Description:
Firma comité

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia