Design and implementation of a quantum multilayer neural network framewori

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorGamboa Vázquez, Ariel Arturo Goubiah
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberAspuru Guzik, Alan
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorHERNANDEZ GRESS, NEIL; 21847
dc.date.accepted2020-12
dc.date.accessioned2022-02-24T00:37:20Z
dc.date.available2022-02-24T00:37:20Z
dc.date.created2020-10-30
dc.date.issued2020-12
dc.descriptionhttps://orcid.org/0000-0003-0966-5685es_MX
dc.description.abstractArtificial Neurons are biologically inspired algorithms that form the building blocks for Artificial Neural Networks (ANNs) and Multilayer Neural Networks (MNN), which have been recently studied and implemented to solve important ptoblems. Advances in Learning theory and the availability of powerful computational systems has resulted in the creation of many real-world applications. Practically every industry has already adopted Multilayer Learning powered technologies in some part of their processes, as state of the art MNNpowered algorithms can outperform other algorithms and even human accuracy for a wide number of tasks. However, their performance relies heavily on the budget of data available as well as its format, as the most popular applications require a copious amount of training examples. Another limitation to build large scale MNN applications is the vast computational resources needed to build these systems. MNN based algorithms usage is widespread and also getting more complex, this phenomenon creates an ever-growing demand for computational power, which may no longer be satisfied at some point in the new future, thanks to the deceleration in state of the art monolithic processors’ performance. Quantum information theory, is a field that has had success in the last couple of decades, thanks to the creation of algorithms that are in theory able to outperform classical computers. The ability of quantum computers of working with inherently different physical systems than the ones used by classical computers, opens an exciting opportunity for scientists and companies to explore the performance of quantum computers for machine learning tasks, being multilayer learning a focus point, thanks to its importance in classical computing. Although a considerable amount of resources have been allocated to the development of MNN powered algorithms in quantum computers, there are still challenges left to overcome before Quantum Multilayer Neural Networks come to be a technology that can compete with state of the art MNN powered algorithms. This research explores the properties of multilayer neural network algorithms running on quantum computers. The first contribution of the research work reported in this document is the analysis and implementation of a perceptron algorithm running on a quantum computer. The second contribution is the proposal, implementation and analysis of two different information encoding methods for quantum computers. The final, and most important contribution of this work, is the development of a framework that allows training multilayer neural networks for Supervised Learning.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1203||120302es_MX
dc.identifier.citationGamboa Vázquez A.A.G. (2020). Design and implementation of a quantum multilayer neural network framework (Tesis de maestría sin publicar). Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-0268-201Xes_MX
dc.identifier.urihttps://hdl.handle.net/11285/645177
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationXofia Computinges_MX
dc.relation.impreso2020-11-19
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOSes_MX
dc.subject.keywordQuantum Machinees_MX
dc.subject.keywordLearninges_MX
dc.subject.keywordNeural Networkses_MX
dc.subject.lcshSciencees_MX
dc.titleDesign and implementation of a quantum multilayer neural network framewories_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
formato_firma.pdf
Size:
99.33 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Tesis final Ariel Arturo.pdf
Size:
10.77 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firmas Ariel Arturo.pdf
Size:
167 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Autoria Ariel Arturo.pdf
Size:
48.34 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia