Monocular obstacle avoidance framework for autonomous navigation
| dc.audience.educationlevel | Estudiantes/Students | |
| dc.audience.educationlevel | Maestros/Teachers | |
| dc.audience.educationlevel | Otros/Other | |
| dc.audience.educationlevel | Empresas/Companies | |
| dc.contributor.advisor | Sotelo Molina, David Alejandro | |
| dc.contributor.author | Abascal Molina, Andrea | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Muñoz Ubando, Luis Alberto | |
| dc.contributor.committeemember | Pinto Orozco, Arturo | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.contributor.mentor | Sotelo Molina, Carlos Gustavo | |
| dc.date.accepted | 2025-06 | |
| dc.date.accessioned | 2025-07-20T03:26:12Z | |
| dc.date.embargoenddate | 2027-07-19 | |
| dc.date.issued | 2025-06 | |
| dc.description | https://orcid.org/0000-0003-3060-7033 | |
| dc.description.abstract | This thesis presents a vision-based autonomous navigation framework that integrates deep learning-based monocular depth estimation with a Model Predictive Control (MPC) strategy for dynamic obstacle avoidance in indoor Unmanned Aerial Vehicles (UAVs). The proposed system addresses key challenges of operating in cluttered indoor environments where tradi- tional localization and depth sensing solutions are impractical due to hardware constraints or environmental limitations. Leveraging a fine-tuned Depth Anything V2 model, the frame- work generates dense depth maps in real time and utilizes them to construct sector-based spatial constraints within the UAV’s visual field. These constraints are incorporated into the MPC formulation to inform predictive control decisions and enable safe trajectory planning. A visual feature extraction module based on marker detection provides the reference trajec- tory for visual servoing, while the UAV continuously updates its path to avoid obstacles using dynamic depth constraints. The system was experimentally validated on a Tello quadrotor in various indoor scenarios, including static target alignment, dynamic target tracking, and ob- stacle intrusion. The results demonstrate reliable visual tracking, real-time depth estimation reaching 40 Hz via TensorRT optimization, and successful avoidance behavior under com- plex visual conditions. The contributions of this work include the design of a lightweight real-time perception-to-control pipeline, the integration of DL-based depth constraints into an MPC framework, and the demonstration of safe, closed-loop UAV navigation in dynamic environments. Although the system is designed for aerial robots, its modular architecture and sensor-driven control strategy generalize to other mobile robotic platforms. Ultimately, this framework equips mobile robots with advanced perception capabilities that are essential for achieving higher levels of autonomy in complex and unstructured environments. | |
| dc.description.degree | Master of Science in Computer Science | |
| dc.format.medium | Texto | |
| dc.identificator | 339999 | |
| dc.identifier.citation | Abascal Molina, A. (2025). Monocular obstacle avoidance framework for autonomous navigation [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703875 | |
| dc.identifier.uri | https://hdl.handle.net/11285/703875 | |
| dc.language.iso | eng | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | openAccess | |
| dc.rights.embargoreason | Así se me especificó por parte del programa de la maestría. | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS | |
| dc.subject.keyword | Monocular Depth Estimation | |
| dc.subject.keyword | Depth maps | |
| dc.subject.keyword | UAV | |
| dc.subject.keyword | Dynamic obstacle avoidance | |
| dc.subject.keyword | Autonomous navigation, | |
| dc.subject.keyword | MPC controller | |
| dc.subject.keyword | Perception | |
| dc.subject.lcsh | Technology | |
| dc.title | Monocular obstacle avoidance framework for autonomous navigation | |
| dc.type | Tesis de maestría |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- AbascalMolina_TesisMaestría_pdfa.pdf
- Size:
- 18.96 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- AbascalMolina_ActaGradoDeclaracionAutoria_pdfa.pdf
- Size:
- 387.51 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración Autoría
Loading...
- Name:
- AbascalMolina_CartaAutorizacion_pdf.pdf
- Size:
- 237.97 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

