Monocular obstacle avoidance framework for autonomous navigation

dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.audience.educationlevelEmpresas/Companies
dc.contributor.advisorSotelo Molina, David Alejandro
dc.contributor.authorAbascal Molina, Andrea
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberMuñoz Ubando, Luis Alberto
dc.contributor.committeememberPinto Orozco, Arturo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorSotelo Molina, Carlos Gustavo
dc.date.accepted2025-06
dc.date.accessioned2025-07-20T03:26:12Z
dc.date.embargoenddate2027-07-19
dc.date.issued2025-06
dc.descriptionhttps://orcid.org/0000-0003-3060-7033
dc.description.abstractThis thesis presents a vision-based autonomous navigation framework that integrates deep learning-based monocular depth estimation with a Model Predictive Control (MPC) strategy for dynamic obstacle avoidance in indoor Unmanned Aerial Vehicles (UAVs). The proposed system addresses key challenges of operating in cluttered indoor environments where tradi- tional localization and depth sensing solutions are impractical due to hardware constraints or environmental limitations. Leveraging a fine-tuned Depth Anything V2 model, the frame- work generates dense depth maps in real time and utilizes them to construct sector-based spatial constraints within the UAV’s visual field. These constraints are incorporated into the MPC formulation to inform predictive control decisions and enable safe trajectory planning. A visual feature extraction module based on marker detection provides the reference trajec- tory for visual servoing, while the UAV continuously updates its path to avoid obstacles using dynamic depth constraints. The system was experimentally validated on a Tello quadrotor in various indoor scenarios, including static target alignment, dynamic target tracking, and ob- stacle intrusion. The results demonstrate reliable visual tracking, real-time depth estimation reaching 40 Hz via TensorRT optimization, and successful avoidance behavior under com- plex visual conditions. The contributions of this work include the design of a lightweight real-time perception-to-control pipeline, the integration of DL-based depth constraints into an MPC framework, and the demonstration of safe, closed-loop UAV navigation in dynamic environments. Although the system is designed for aerial robots, its modular architecture and sensor-driven control strategy generalize to other mobile robotic platforms. Ultimately, this framework equips mobile robots with advanced perception capabilities that are essential for achieving higher levels of autonomy in complex and unstructured environments.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator339999
dc.identifier.citationAbascal Molina, A. (2025). Monocular obstacle avoidance framework for autonomous navigation [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703875
dc.identifier.urihttps://hdl.handle.net/11285/703875
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.embargoreasonAsí se me especificó por parte del programa de la maestría.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.keywordMonocular Depth Estimation
dc.subject.keywordDepth maps
dc.subject.keywordUAV
dc.subject.keywordDynamic obstacle avoidance
dc.subject.keywordAutonomous navigation,
dc.subject.keywordMPC controller
dc.subject.keywordPerception
dc.subject.lcshTechnology
dc.titleMonocular obstacle avoidance framework for autonomous navigation
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
AbascalMolina_TesisMaestría_pdfa.pdf
Size:
18.96 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
AbascalMolina_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
387.51 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración Autoría
Loading...
Thumbnail Image
Name:
AbascalMolina_CartaAutorizacion_pdf.pdf
Size:
237.97 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia