Mining contrast patterns from multivariate decision trees

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorMonroy, Raúl
dc.contributor.authorCañete Sifuentes, Leonardo Mauricio
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberJair Escalante, Hugo
dc.contributor.committeememberConant Pablos, Santiago Enrique
dc.contributor.committeememberLoyola González, Octavio
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.contributor.mentorMedina Pérez, Miguel Angel
dc.date.accepted2018-05-08
dc.date.accessioned2025-04-03T01:46:38Z
dc.date.issued2018
dc.descriptionhttps://orcid.org/0000-0002-3465-995X
dc.description.abstractCurrently, there is a growing interest in the development of classifiers based on contrast patterns (CPs); this is partly due to the advantage of them being able to explain a classification result in a language that is easy to understand for an expert. Thorough experiments show that CP- based classifiers, when using contrast patterns extracted by miners based on decision trees, attain accuracies comparable with state-of-the-art classifiers like SVM, k-NN, C4.5, Bagging and Boosting. Existing decision tree-based miners use Univariate Decision Trees (UDTs) to extract CPs. For tree-based classification classifiers based on Multivariate Decision Trees (MDTs) achieve better accuracy than those based on UDTs. This result might be attributable to that MDTs use multivariate relations (e.g., 2height + 3weight > 40) which, in some cases, separate better the classes than the univariate relations (e.g., age > 40) that UDTs use. Our hypothesis runs parallel, but for CP-based classification: using CPs extracted from MDT-based miners, which we call multivariate contrast patterns, a CP-based classifier shall significantly improve on the performance of others based on UDTs. We propose an algorithm to extract, simplify and filter multivariate CPs. We make an empirical study of our proposed algorithm. We use 112 datasets, taking half of the datasets for tuning the parameters of our algorithm. To validate our hypotheses, we use the other half of the datasets as a testing set to compare our algorithm against other state-of-the-art CP miners in terms of quality, and against other state-of-the-art classifiers, in terms of classification performance. The results obtained in the testing set show that the quality of multivariate CPs, in terms of Jaccard, is significantly higher than that of CPs extracted through UDTs (univariate CPs). We also show that the classification results for CP-based classifiers are significantly better when using multivariate CPs than when using univariate CPs; which could be explained by the higher quality of multivariate CPs. The classification results for multivariate CP-based classifiers are also competitive with non-pattern-based state-of-the-art classifiers. Yet, the plus is that multivariate CP-based classifiers provide contrast patterns, which are abstract-level explanations that could help an expert to gain insights in the problem under investigation.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator330406
dc.identifier.citationCañete Sifuentes, L. M. (2018). Mining contrast patterns from multivariate decision trees. [Tesis maestría]. Instituto Tecnológico de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703454
dc.identifier.cvu787723es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-3175-8917
dc.identifier.scopusid57191961402es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703454
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::ARQUITECTURA DE ORDENADORES
dc.subject.keywordMachine learninges_MX
dc.subject.keywordContrast patternses_MX
dc.subject.keywordMultivariate decision treeses_MX
dc.subject.keywordClassificationes_MX
dc.subject.lcshSciencees_MX
dc.titleMining contrast patterns from multivariate decision treeses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
CaneteSifuentes_CartaAutorizcioin.jpg
Size:
465.73 KB
Format:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
CaneteSifuentes_Tesis.pdf
Size:
1001.27 KB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
CaneteSifuentes_ActadeGrado.pdf
Size:
337.25 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado.
Loading...
Thumbnail Image
Name:
CaneteSifuentes_ActadeGrado_1.pdf
Size:
237.51 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado_1

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia