Optimization of kinetic and operating parameters in bioreactors using evolutionary algorithms

dc.audience.educationlevelOtros/Other
dc.contributor.advisorSosa Hernández, Víctor Adrián
dc.contributor.authorBarrera Hernández, Gonzalo Irving
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberAlfaro Ponce, Mariel
dc.contributor.committeememberAranda Barradas, Juan Silvestre
dc.contributor.committeememberCorrales Muñoz, David Camilo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Estado de México
dc.contributor.mentorGómez Acata, Rigel Valentín
dc.date.accepted2024-12-02
dc.date.accessioned2024-12-31T05:26:26Z
dc.date.issued2024-11
dc.descriptionhttps://orcid.org/0000-0002-1099-8148
dc.description.abstractBioreactors play a role in creating biological products such as medicines and biofuels by care fully controlling factors such as substrate levels and temperature within them to obtain optimal production results, bioreactor production process poses a challenge that poses a challenge to engineers due to the intricate setup involved. In the field of microbiology and biotechnology, conventional approaches such as the Monod model, logistic growth models, and fed-batch techniques have been employed to predict and improve the growth conditions of microor ganisms and the production of proteins of interest in fermenters. However, these approaches could face challenges when they encounter nonlinear systems and conflicting objectives. To address these challenges, our suggestion is to approach the configuration of factors in bioreactors as an optimization problem using an evolutionary algorithm that can improve the effectiveness and quality of the operating process. The objective of this study is to in vestigate and create a pipeline that integrates evolutionary algorithms to solve multi-objective and scalar optimization problems, aimed at identifying kinetic and critical parameters within a bioreactor system. The optimization process involves, in the first stage, a least squares ap proach that considers product, biomass, dissolved oxygen, and substrate concentrations as objectives, with the kinetic parameters (e.g., maximum specific growth rate and substrate affinity) serving as decision variables. The second stage focuses solely on maximizing the amount of produced product, specifically biomass, using critical operational variables, such as feed rate and aeration, as decision variables. The research employs Escherichia coli as a microorganism that has been genetically al tered to produce orange fluorescent protein (OFP) to test the validity of improvement frame works. Initially, in the simulation and process tuning phase, experimental information, from batch cultures, is used to accurately determine the factors. Later, in the fed-batch phase, the application of an algorithm is used to optimize biomass yield while considering operational constraints such as oxygen levels and maximum reactor volume. The findings show that this method accurately calculates factors during the fed-batch phase and efficiently increases biomass production in the continuous fed phase. The use of algorithms such as multiple NSGA-III and single-objective genetic algorithms provides valuable benefits when dealing with intricate bioreactor configurations that have conflicting objectives such as managing substrate consumption and improving production yield. This approach has promising prospects for improving the accuracy and efficiency of bioprocess optimization, while increasing its scalability, in the field of biotechnology in the future.
dc.format.mediumTexto
dc.identificator339999
dc.identifier.citationBarrera Hernández, G. I (2024) Optimization of kinetic and operating parameters in bioreactors using evolutionary algorithms [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702958
dc.identifier.orcidhttps://orcid.org/0009-0007-2255-2884
dc.identifier.urihttps://hdl.handle.net/11285/702958
dc.identifier.urihttps://doi.org/10.60473/ritec.34
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.keywordBioreactors
dc.subject.keywordOptimization
dc.subject.keywordEvolutionary algorithms
dc.subject.keywordMulti-objective optimization
dc.subject.keywordKinetic parameters
dc.subject.keywordOperational variables
dc.subject.keywordFed-batch process
dc.subject.keywordEscherichia coli
dc.subject.keywordOrange fluorescent protein (OFP)
dc.subject.keywordBiomass production
dc.subject.keywordSubstrate consumption
dc.subject.keywordAeration rate
dc.subject.keywordGenetic algorithms
dc.subject.keywordBiotechnology
dc.subject.keywordBioprocess engineering
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleOptimization of kinetic and operating parameters in bioreactors using evolutionary algorithms
dc.typeTesis de Maestría / master Thesis

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
BarreraHernandez_TesisMaestriapdfa.pdf
Size:
3.95 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
BarreraHernandez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
714.71 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
Gonzalo Irving Barrera Hernandez Carta Autorización.pdf
Size:
91.36 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia