Crowd-scouting: enhancing football talent identification through the use of machine learning and wisdom of crowds

dc.audience.educationlevelOtros/Other
dc.contributor.advisorZareei, Mahdi
dc.contributor.authorDíaz de León Rodríguez, Iván
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberRoshan Biswal, Rajesh
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Estado de México
dc.contributor.mentorHinojosa Cervantes, Salvador Miguel
dc.date.accepted2024-12
dc.date.accessioned2025-01-06T18:19:00Z
dc.date.issued2024-12
dc.description0000-0001-6623-1758
dc.description.abstractThe identification of talented young footballers is a cornerstone of success in professional football. This capability empowers established clubs to nurture potential superstars who elevate team performance and propel them towards championship contention. Smaller clubs strategically leverage this skill set to develop talent for an eventual sale, boosting their financial situation and, in some instances, even mounting their own title challenges. Ultimately, the ability to recognize future elite players has consistently translated into a significant competitive advantage throughout the history of the sport. This thesis delves into this domain by comparing the performance of three supervised machine learning models (Random Forest, Gradient Boosting, and Support Vector Machines). The models were trained using two comprehensive datasets encompassing data for 1,086 male professional footballers. The first one incorporates player statistics, game-related attributes, and transfer market values. The second one incorporates YouTube metrics to leverage the well-established concept of the wisdom of crowds. This concept presumes that the collective intelligence of a large group can outperform individual judgment. The wisdom of the fans has the potential to optimize scouting efforts. Historical and literary evidence suggests that the most effective strategies combine data with human judgment, particularly for complex tasks such as talent identification. SVM demonstrated the highest effectiveness, achieving superior sensitivity and identifying the greatest proportion of elite players within the dataset under the baseline scenario following a 5-fold cross-validation. Although its performance declined after the inclusion of crowd-sourced features, SVM continued to capture the largest portion of elite players, despite its lower precision score. The crowd-sourced features exhibited surprising potential when integrated with tree-based models, enhancing both sensitivity and precision in identifying the minority class. These models successfully captured a significantly larger share of the minority class while preserving their discriminative capacity. Integrating the collective knowledge of football fans improved the performance of a classification algorithm in identifying elite players using the selected features; thus, thereby validating the hypothesis stated in this dissertation. Furthermore, the feature importance analysis and other valuable insights gleaned from the study pave the way for further research endeavors. By providing this comparative analysis, the study aims to encourage the adoption of advanced data analytics, statistical methods, and more crowd-sourced data within football clubs worldwide. This approach can empower them to optimize resource allocation and refine their talent identification strategies.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator53||589999
dc.identifier.citationDíaz de León Rodríguez, I, (2024). Crowd-scouting: enhancing football talent identification through the use of machine learning and wisdom of crowds [Tesis maestria] Instituto Tecnológico de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702975
dc.identifier.cvu1276345
dc.identifier.orcid0009-0008-3438-8644
dc.identifier.urihttps://hdl.handle.net/11285/702975
dc.identifier.urihttps://doi.org/10.60473/ritec.51
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCyT
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationHUMANIDADES Y CIENCIAS DE LA CONDUCTA::PEDAGOGÍA::OTRAS ESPECIALIDADES PEDAGÓGICAS::OTRAS
dc.subject.keywordFootball
dc.subject.keywordMachine Learning
dc.subject.keywordCrowd Wisdom
dc.subject.keywordNatural Language Processing
dc.subject.keywordSentiment Analysis
dc.subject.lcshEducation
dc.subject.lcshSocial Sciences
dc.titleCrowd-scouting: enhancing football talent identification through the use of machine learning and wisdom of crowds
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
DíazdeLeónRodríguezIvan_Tesis.pdf
Size:
3.61 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
DíazdeLeónRodríguezIván_ ActadeGrado.pdf
Size:
395.79 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
DíazdeLeónRodríguezIván_CartaAutorización.pdf
Size:
142.73 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Díazde LeónRodríguezIvan_declaraciondeautoria.pdf
Size:
424.55 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
DiazdeLeonRodriguezIvan_curriculumvitae.pdf
Size:
329.42 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia