Facilitating early detection of depression through conversational audios and machine learning techniques
| dc.audience.educationlevel | Investigadores/Researchers | es_MX |
| dc.contributor.advisor | Trejo Rodriguez, Luis Ángel | |
| dc.contributor.author | Noriega Quirós, Isabella | |
| dc.contributor.cataloger | puemcuervo, emipsanchez | |
| dc.contributor.committeemember | González Mendoza, Miguel | |
| dc.contributor.committeemember | Brena Pinero, Ramón Felipe | |
| dc.contributor.committeemember | Figueroa López, Carlos Gonzalo | |
| dc.contributor.department | Escuela de Ingeniería y Ciencias | es_MX |
| dc.contributor.institution | Campus Monterrey | es_MX |
| dc.date.accepted | 2023-06-01 | |
| dc.date.accessioned | 2025-03-20T01:08:40Z | |
| dc.date.issued | 2023-06-21 | |
| dc.description | https://orcid.org/0000-0001-9741-4581 | es_MX |
| dc.description.abstract | Mental health is becoming a trending topic amongst society. The relevance of it in our lives is being studied in order to achieve a better comprehension for our well-being. Studies have shown that both anxiety and depression greatly affect higher education student’s performance and development, as well as post-graduate life. Early detection of depression, or other mental health issues, could lead to sooner evaluation and support. As humans go through life, many stressful situations arise. This is not possible to avoid. Nevertheless, our resilience to stress is the factor that estimates how much stress we can handle until reaching alerting levels of a possible mental disorder. This research intends to use machine learning techniques to deliver an accurate classification from depressive indicators based on conversational audios. The result provided will be used by an algorithm to analyze the individual’s state, and with the combination of conversational audios and the psychophysiological profile, it will identify early symptoms of the illness, which will alert the individual in time to act. | es_MX |
| dc.description.degree | Master of Science in Computer Science | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 7||33||3314||331499 | es_MX |
| dc.identifier.citation | Noriega Quirós, I. (2023). Facilitating early detection of depression through conversational audios with machine learning techniques [Tesis maestria]. Instituto Tecnológico y de Estudios Superiores Monterrey. Recuperado de: https://hdl.handle.net/11285/703372 | |
| dc.identifier.cvu | 1152296 | es_MX |
| dc.identifier.orcid | https://orcid.org/0000-0002-4575-3765 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/703372 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation.isFormatOf | acceptedVersion | es_MX |
| dc.rights | openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRAS | es_MX |
| dc.subject.keyword | Machine learning | es_MX |
| dc.subject.keyword | Depression | es_MX |
| dc.subject.keyword | Anxiety | es_MX |
| dc.subject.keyword | Stress | es_MX |
| dc.subject.keyword | Resilience to mental stress index | es_MX |
| dc.subject.keyword | Biomarkers | es_MX |
| dc.subject.keyword | Conversational audios | es_MX |
| dc.subject.keyword | Dataset | es_MX |
| dc.subject.lcsh | Science | es_MX |
| dc.title | Facilitating early detection of depression through conversational audios and machine learning techniques | es_MX |
| dc.type | Tesis de Maestría / master Thesis | es_MX |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- NoriegaQuiros_ActaGradoDeclaracionAutoriapdfa.pdf
- Size:
- 605.99 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- NoriegaQuiros_CartaAutorizacionpdf.pdf
- Size:
- 56.42 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
Loading...
- Name:
- NoriegaQuiros_TesisMaestriapdfa.pdf
- Size:
- 22.01 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

