Facilitating early detection of depression through conversational audios and machine learning techniques

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorTrejo Rodriguez, Luis Ángel
dc.contributor.authorNoriega Quirós, Isabella
dc.contributor.catalogerpuemcuervo, emipsanchez
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberBrena Pinero, Ramón Felipe
dc.contributor.committeememberFigueroa López, Carlos Gonzalo
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accepted2023-06-01
dc.date.accessioned2025-03-20T01:08:40Z
dc.date.issued2023-06-21
dc.descriptionhttps://orcid.org/0000-0001-9741-4581es_MX
dc.description.abstractMental health is becoming a trending topic amongst society. The relevance of it in our lives is being studied in order to achieve a better comprehension for our well-being. Studies have shown that both anxiety and depression greatly affect higher education student’s performance and development, as well as post-graduate life. Early detection of depression, or other mental health issues, could lead to sooner evaluation and support. As humans go through life, many stressful situations arise. This is not possible to avoid. Nevertheless, our resilience to stress is the factor that estimates how much stress we can handle until reaching alerting levels of a possible mental disorder. This research intends to use machine learning techniques to deliver an accurate classification from depressive indicators based on conversational audios. The result provided will be used by an algorithm to analyze the individual’s state, and with the combination of conversational audios and the psychophysiological profile, it will identify early symptoms of the illness, which will alert the individual in time to act.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationNoriega Quirós, I. (2023). Facilitating early detection of depression through conversational audios with machine learning techniques [Tesis maestria]. Instituto Tecnológico y de Estudios Superiores Monterrey. Recuperado de: https://hdl.handle.net/11285/703372
dc.identifier.cvu1152296es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-4575-3765es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703372
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordMachine learninges_MX
dc.subject.keywordDepressiones_MX
dc.subject.keywordAnxietyes_MX
dc.subject.keywordStresses_MX
dc.subject.keywordResilience to mental stress indexes_MX
dc.subject.keywordBiomarkerses_MX
dc.subject.keywordConversational audioses_MX
dc.subject.keywordDatasetes_MX
dc.subject.lcshSciencees_MX
dc.titleFacilitating early detection of depression through conversational audios and machine learning techniqueses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
NoriegaQuiros_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
605.99 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
NoriegaQuiros_CartaAutorizacionpdf.pdf
Size:
56.42 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
NoriegaQuiros_TesisMaestriapdfa.pdf
Size:
22.01 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia