Road surface monitoring system through machine learning classification ensemble models

dc.audience.educationlevelEmpresas/Companieses_MX
dc.audience.educationlevelEstudiantes/Studentses_MX
dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.audience.educationlevelMaestros/Teacherses_MX
dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorBustamante Bello, Martin Rogelio
dc.contributor.authorArce Sáenz, Luis Alejandro
dc.contributor.catalogerpuelquio, emipsanchez
dc.contributor.committeememberVillagra Serrano, Jorge
dc.contributor.committeememberGalluzzi Aguilera, Renato
dc.contributor.committeememberRamírez Mendoza, Ricardo Ambrocio
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Ciudad de Méxicoes_MX
dc.contributor.mentorIzquierdo Reyes, Javier
dc.date.accepted2022-12-01
dc.date.accessioned2025-02-19T18:49:44Z
dc.date.embargoenddate2023-12-01
dc.date.issued2022-12
dc.descriptionhttps://orcid.org/0000-0001-9270-0052
dc.description.abstractThe development of megacities is currently the scene of many problems; an important one to consider is the quality and efficiency of their mobility. An essential factor impacting this is the quality of their road networks, which can affect the durability and safety of ground transportation systems. Mexico City is a great example of such deficiencies. Therefore smart mobility strategies and planning in terms of logistics have been proposed, but few technological integrations have been implemented. In this work, a platform capable of monitoring surface defects in road pavement using Inertial Measurement Units and Machine Learning classification models was designed and developed. This was achieved by recording accelerometer and gyroscope measurements on a test vehicle's damped and undamped mass while driving on Mexico City streets. The measurements were labeled to identify and classify general and specific elements of road irregularities: smooth and uneven road segments, potholes, manholes, speed bumps, and patches. It is described as a methodology for preprocessing the data through time series analysis and feature extraction in the time and frequency domain. Four ensemble models were trained using the best classification models out of eight candidates; an exhaustive grid search methodology was used to select the best classification models per category and optimize the system's performance. Finally, the algorithms and models were loaded into a cloud instance to process incoming raw data; the resultant predictions were stored in a cloud database to be visualized on a web platform.es_MX
dc.description.degreeMaestro en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3327||332703es_MX
dc.identifier.citationArce Sáenz, L.A. (2022). Road surface monitoring system through machine learning classification ensemble models [Tesis de Maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703194
dc.identifier.cvu1104880es_MX
dc.identifier.orcidhttps://orcid.org/0000-0003-0732-8693
dc.identifier.urihttps://hdl.handle.net/11285/703194
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsrestrictedAccesses_MX
dc.rights.embargoreasonEl usuario solicita dejar restringido su documentoes_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS SISTEMAS DE TRANSPORTE::SISTEMAS DE TRÁNSITO URBANOes_MX
dc.subject.keywordSmart Mobility
dc.subject.keywordAnomaly Detection
dc.subject.keywordMachine Learning
dc.subject.keywordEnsemble Models
dc.subject.keywordClassification
dc.subject.keywordRoad Surface Analysis
dc.subject.lcshTechnologyes_MX
dc.titleRoad surface monitoring system through machine learning classification ensemble modelses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
ArceSaenz_TesisMaestriapdfa.pdf
Size:
159.54 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
ArceSaenz_ActaGradopdfa.pdf
Size:
455.11 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
ArceSaenz_CartaAutorizacionpdf.pdf
Size:
533.13 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia