A robust and interpretable machine learning framework for vanadium oxide supercapacitors

dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorKumar, Rudra
dc.contributor.authorOrtiz Aldana, Emmanuel Alexei
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberMallar, Ray
dc.contributor.committeememberSánchez Ante, Gildardo
dc.contributor.committeememberKumar, Kishant
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorEbrahimibagha, Dariush
dc.date.accepted2025-06-13
dc.date.accessioned2025-07-14T22:00:22Z
dc.date.issued2025-06-13
dc.descriptionhttps://orcid.org/0000-0002-6190-7779
dc.description.abstractAs global energy demands intensify, the development of efficient, scalable and reliable energy storage systems becomes increasingly urgent. While lithium-ion batteries dominate the current market, their low power density makes them unsuitable for current fluctuations degrading their life expectancy. Supercapacitors (SCs) with pseudocapacitance materials such as vanadium oxide offer an attractive option, with high power density, long life cycle and fast charge-discharge rate. However, their low energy density remains a major bottleneck limiting broader adoption. Current supercapacitor research is focused on improving the specific capacitance and thus expanding their energy density, nevertheless this is mostly done on traditional trial and error experiments, making it time-consuming, slow and expensive. Materials Informatics offers a paradigm shift by implementing machine learning (ML) techniques to uncover patterns in existing data and accelerate the design of novel materials. Despite promising results, many current materials ML studies suffer from limitations such as small data range, improper data preprocessing, target leakage, and lack of reproducibility due to unshared code and datasets. In this work a robust machine learning framework was developed for vanadium oxide SCs, designed to extract interpretable insights from manually gathered literature data. A rigorous cross-validation (CV) pipeline was implemented to ensure reliable model evaluation, avoiding common pitfalls such as overfitting and data leakage. Among the evaluated models, a Voting Regressor combining Ridge Regression, Extreme Gradient Boosting (XGBoost), and Categorical Boosting (CatBoost) achieved the best performance with a mean absolute error (MAE), root mean squared error (RMSE), and 𝑅2 of 81 𝐹 𝑔 ⁄ , 104 𝐹 𝑔 ⁄ and 0.61, respectively. To extract insights from the models, interpretability algorithms, including permutation importance (PI) and SHapley Additive exPlanations (SHAP) values were employed. Binder-free electrodes, wider potential windows, and a low current density are consistently associated with higher specific capacitance predictions. These findings highlight the potential of interpretable methods to uncover the ML models behavior and lead guided design of SCs.
dc.description.degreeMaster in Nanotechnology
dc.format.mediumTexto
dc.identificator332299||332203||3313
dc.identifier.citationOrtiz Aldana, E. A. (2025). A robust and interpretable machine learning framework for vanadium oxide supercapacitors. [Tesis maestría] Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703828
dc.identifier.urihttps://hdl.handle.net/11285/703828
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationSECIHTI
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ENERGÉTICA::OTRAS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ENERGÉTICA::GENERADORES DE ENERGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA E INGENIERÍA MECÁNICAS
dc.subject.keywordMachine Learning
dc.subject.keywordSupercapacitor
dc.subject.keywordVanadium oxide
dc.subject.keywordData leakage
dc.subject.keywordFeature selection
dc.titleA robust and interpretable machine learning framework for vanadium oxide supercapacitors
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
OrtizAldana_TesisMaestria.pdfa.pdf
Size:
2.24 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
OrtizAldana_CartaAutorizacion_pdfa.pdf
Size:
150.07 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
OrtizAldana_FirmasActadeGrado.pdfa.pdf
Size:
664.47 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia