Identification of species of plants of the Solanum (Solanaceae) genus native to Mexico using computational vision and convolutional neural networks on pictures of herbarium specimens

dc.audience.educationlevelInvestigadores/Researchers
dc.contributor.advisorFalcón Morales, Luis Eduardo
dc.contributor.authorHernández Rincón, Carlos Eduardo
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberRodríguez Contreras, Aarón
dc.contributor.committeememberMendoza Montoya, Omar
dc.contributor.departmentEscuela de Ingeniería y Ciencias EIC
dc.contributor.institutionCampus Guadalajara
dc.date.accepted2025-05-09
dc.date.accessioned2025-07-11T02:45:53Z
dc.date.issued2025-02
dc.description.abstractThe development of Deep Learning techniques like Convolutional Neural Networks for automated image processing has been making big strides in recent years. This has helped to find more practical applications in many science fields. One such field is that of botanic taxonomic analysis which aims to accurately identify and classify new species of plants. It is important not only for scientific purposes but also for taking appropriate conservation actions, for economic reasons and for proper environment policy making. However, doing this requires a lot of technical skills and time and the number of qualified people at herbaria and scientific institutions in Mexico is not enough. Moreover, a significant number of new plant species have already been collected but are sitting unidentified in herbaria across the country. The Solanum genus encompasses species such as potatoes, eggplants and tomatoes. It is one of the most diverse and important for its economic, nutritious and cultural value worldwide. Mexico is no exception, and it is home to many species both discovered and undiscovered. Currently there is a project at Universidad de Guadalajara to identify all species of the Solanum genus native to Mexico that have already been collected at different herbaria. Convolutional Neural Networks could help with this huge task. The main purpose of this research is to prove that a system to assist a human taxonomist identify these plants is feasible and indeed helpful.
dc.description.degreeMaestría en Ciencias Computacionales
dc.format.mediumTexto
dc.identificator241703
dc.identifier.citationHernández Rincón, C. E. (2025). Identification of species of plants of the Solanum (Solanaceae) genus native to Mexico using computational vision and convolutional neural networks on pictures of herbarium specimens [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703812
dc.identifier.orcidhttps://orcid.org/0009-0005-7218-1335
dc.identifier.urihttps://hdl.handle.net/11285/703812
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfpublishedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::BIOLOGÍA VEGETAL (BOTÁNICA)::BOTÁNICA GENERAL
dc.subject.keywordComputer vision
dc.subject.keywordConvolutional neural networks
dc.subject.keywordBotany
dc.subject.keywordSolanum genus
dc.subject.keywordTransfer learning
dc.subject.lcshGeneral works
dc.titleIdentification of species of plants of the Solanum (Solanaceae) genus native to Mexico using computational vision and convolutional neural networks on pictures of herbarium specimens
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Tesis - Carlos Eduardo Hernandez Rincon - A01181616 - Identification of species of plants of the Solanum (Solanaceae) genus.pdf
Size:
3.22 MB
Format:
Adobe Portable Document Format
Description:
Master thesis
Loading...
Thumbnail Image
Name:
ActaDeExamenYAutorizacion.pdf
Size:
957.52 KB
Format:
Adobe Portable Document Format
Description:
Acta de Examen y Autorizacion
Loading...
Thumbnail Image
Name:
CartaAutorizacionRepositorioTesis- FIRMADA.pdf
Size:
830.67 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia