Neuroimaging-based pain detector using artificial intelligence approaches

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorHernández Rojas, Luis Guillermo
dc.contributor.authorMacías Padilla, Brayhan Alan
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.committeememberMendoza Montoya,Omar
dc.contributor.committeememberChailloux Peguero, Juan David
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorAntelis Ortiz, Javier Mauricio
dc.date.accepted2025-06
dc.date.accessioned2025-07-21T02:49:36Z
dc.date.issued2025-06-17
dc.description.abstractChronic pain is a complex, multifactorial experience that varies significantly across time, sex, and individual physiology. This thesis presents the development of a deep learning-based sys- tem for classifying pain-related brain activity using functional magnetic resonance imaging (fMRI) from a rodent model of a comorbid pain condition (masseter muscle inflammation fol- lowed by stress) that induces chronic visceral pain hypersensitivity (CPH). The proposed sys- tem evaluates the potential ofconvolutional neural networks (CNNs) to detect pain-associated neural patterns under different experimental conditions.Three variations of the VGG16 architecture were implemented and tested: a modified 2D VGG16 adapted to 3D volumes, a multiview 2D ensemble (M2D) fed with axial, sagittal, and coronal slices, and a fully 3D VGG16 model. After an initial benchmarking phase using data from rest sessions, the 3D VGG16 model was selected for subsequent experiments due to its consistent performance and the ability to learn from full volumetric input.Classification tasks involved multiple comparison scenarios, including sex differences, longitudinal progression of pain (from baseline to weeks 1 and week 7 after the CPH pro- cedure), and the impact of data selection strategies (full rest sessions vs. distension-specific volume extraction). Grad-CAM was used to provide anatomical interpretation of model at- tention, revealing consistent activation of pain-related brain regions such as the insular cortex, somatosensory cortex, thalamic nuclei, and prelimbic area, with marked differences observed between male and female subjects.The results demonstrate the feasibility of using deep neural networks, combined with explainable AI techniques, to decode and interpret pain-related patterns in fMRI data. Fur- thermore, the performance trends observed in classification tasks align with behavioral find- ings reported in the literature, supporting the potential of AI-driven neuroimaging analysis to uncover meaningful biological signatures of chronic pain.This study builds directly upon the work conducted by Da Silva et. al. [1], who previ- ously processed the same dataset to generate VMR representations and statistical t-maps from fMRI data. His analysis focused on identifying regions with significant activation differences between conditions using traditional statistical parametric mapping. Expanding on this foun- dation, the present research integrates deep learning methods, specifically 3D convolutional neural networks (CNNs), to classify experimental conditions directly from the fMRI volumes. Moreover, it incorporates explainable AI techniques (Grad-CAM) to reveal the spatial patterns most influential to classification. This approach offers a shift from region-centric hypothesis testing toward a data-driven, whole-brain interpretability framework, enabling the detection of distributed neural patterns that might not reach statistical significance individually but are collectively informative.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator120304
dc.identifier.citationMacías Padilla, B. A. (2025). Neuroimaging-based pain detector using artificial intelligence approaches [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703878
dc.identifier.urihttps://hdl.handle.net/11285/703878
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
dc.relationSecretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI)
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationBIOLOGÍA Y QUÍMICA::CIENCIAS DE LA VIDA::NEUROCIENCIAS::NEUROFISIOLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LAS TELECOMUNICACIONES::RAYOS X
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::RADIOLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordHypersensitivity
dc.subject.keywordPain
dc.subject.keywordTransfer Learning
dc.subject.keywordNeural Network
dc.subject.keywordGrad-CAM
dc.subject.keywordXAI
dc.subject.keywordCNN
dc.subject.keywordfMRI
dc.subject.keywordArtificial Intelligence
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleNeuroimaging-based pain detector using artificial intelligence approaches
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
MaciasPadilla_TesisMaestria_pdfa.pdf
Size:
16.83 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
MaciasPadilla_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
789.85 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
MaciasPadilla_CartaAutorizacion_pdf.pdf
Size:
505.9 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia