Siamese neural networks for few-shot birdsong classification

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorMartínez Ledesma, Juan Emmanuel
dc.contributor.authorRentería Aguilar, Sergio Santiago
dc.contributor.catalogerlagdtorre/tolmquevedoes_MX
dc.contributor.committeememberTaylor, Charles E.
dc.contributor.committeememberRascón Estebané, Caleb Antonio
dc.contributor.committeememberMonroy Borja, Raúl
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Estado de Méxicoes_MX
dc.date.accepted2020-06
dc.date.accessioned2021-11-05T19:17:41Z
dc.date.available2021-11-05T19:17:41Z
dc.date.created2018-11-01
dc.date.issued2020-06
dc.description.abstractBird vocalizations have been the focus of a wide variety of interdisciplinary studies in bioacoustics and neuroethology since they serve as models of motor control, learning and auditory perception. Yet, researchers have only begun to shed light on the structure and function of birdsong. Hypotheses abound, but still there is little agreement as how songs should be analyzed. One of the main challenges has been to classify acoustic units (syllables) from birdsong recordings, a task requiring robust classification algorithms capable of generalizing to unseen instances and dealing with data scarcity. Systematically detecting changes in syllable repertoires can help biologists to understand the origin and evolution of birdsong. The process of learning good features to discriminate among numerous and different sound classes is computationally expensive. Moreover, it might be impossible to achieve acceptable performance in cases where training data is scarce and classes are unbalanced. To address this issue, we propose a few-shot learning task in which an algorithm must make predictions given only a few instances of each class. We compared the performance of different Siamese Neural Networks at metric learning over the set of Cassini’s Vireo syllables. Then, the network features were reused for the few-shot classification task. With this approach we overcame the limitations of data scarcity and class imbalance while achieving state-of-the-art performance.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120302es_MX
dc.identifier.citationRentería Aguilar, S.S.(2020). Siamese Neural Networks for Few-shot Birdsong Classification.(Tesis de Maestría).Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/641050es_MX
dc.identifier.cvu923222es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5024-6397es_MX
dc.identifier.urihttps://hdl.handle.net/11285/641050
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-05-29
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.urlhttps://renterialab.com/es_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOSes_MX
dc.subject.keywordFew-Shot Learninges_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordBirdsonges_MX
dc.subject.keywordBioacousticses_MX
dc.subject.keywordSignal Processinges_MX
dc.subject.keywordSiamese Neural Networkes_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.lcshTechnologyes_MX
dc.titleSiamese neural networks for few-shot birdsong classificationes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MastersThesis_SantiagoRenteria.pdf
Size:
4.82 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Carta de autorización.pdf
Size:
462.97 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia