The identification of DoS and DDoS attacks to IoT devices in software defined networks by using machine learning and deep learning models

dc.audience.educationlevelEstudiantes/Studentses_MX
dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorPérez Díaz, Jesús Arturo
dc.contributor.authorAlmaraz Rivera, Josué Genaro
dc.contributor.catalogerpuelquio/mscuervoes_MX
dc.contributor.committeememberTrejo Rodríguez, Luis Ángel
dc.contributor.committeememberBotero Vega, Juan Felipe
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorCantoral Ceballos, José Antonio
dc.creatorPEREZ DIAZ, JESUS ARTURO; 31169
dc.date.accepted2022-05
dc.date.accessioned2023-05-19T18:17:24Z
dc.date.available2023-05-19T18:17:24Z
dc.date.issued2022-05
dc.descriptionhttps://orcid.org/0000-0002-7678-5487es_MX
dc.description.abstractThis thesis project explores and improves the current state of the art about detection techniques for Distributed Denial of Service (DDoS) attacks to Internet of Things (IoT) devices in Software Defined Networks (SDN), which as far as is known, is a big problem that network providers and data centers are still facing. Our planned solution for this problem started with the selection of strong Machine Learning (ML) and Deep Learning (DL) models from the current literature (such as Decision Trees and Recurrent Neural Networks), and their further evaluation under three feature sets from our balanced version of the Bot-IoT dataset, in order to evaluate the effects of different variables and avoid the dependencies produced by the Argus flow data generator. With this evaluation we achieved an average accuracy greater than 99% for binary and multiclass classifications, leveraging the categories and subcategories present in the Bot-IoT dataset, for the detection and identification of DDoS attacks based on Transport (UDP, TCP) and Application layer (HTTP) protocols. To extend the capacity of this Intrusion Detection System (IDS) we did a research stay in Colombia, with Universidad de Antioquia and in collaboration with Aligo (a cybersecurity company from Medellín). There, we created a new dataset based on real normal and attack traffic to physical IoT devices: the LATAM-DDoS-IoT dataset. We conducted binary and multiclass classifications with the DoS and the DDoS versions of this new dataset, getting an average accuracy of 99.967% and 98.872%, respectively. Then, we did two additional experiments combining our balanced version of the Bot-IoT dataset, applying transfer learning and a datasets concatenation, showing the differences between both domains and the generalization level we accomplished. Finally, we deployed our extended IDS (as a functional app built in Java and connected to an own cloud-hosted Python REST API) into a real-time SDN simulated environment, based on the Open Network Operating System (ONOS) controller and Mininet. We got a best accuracy of 94.608%, where 100% of the flows identified as attackers were correctly classified, and 91.406% of the attack flows were detected. This app can be further enhanced with the creation of an Intrusion Prevention System (IPS) as mitigation management strategy to stop the identified attackers.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||12||1203||120318es_MX
dc.identifier.citationAlmaraz Rivera, J.G. (2022). The identification of DoS and DDoS attacks to IoT devices in software defined networks by using machine learning and deep learning models [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu942937es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-8343-4530es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650696
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::SISTEMAS DE INFORMACIÓN, DISEÑO Y COMPONENTESes_MX
dc.subject.keywordClass balancinges_MX
dc.subject.keywordDDoS attackses_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordDoS attackses_MX
dc.subject.keywordInternet of Thingses_MX
dc.subject.keywordIntrusion Detection Systemses_MX
dc.subject.keywordLATAM-DDoS-IoT datasetes_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordSoftware Defined Networkinges_MX
dc.subject.keywordTransfer Learninges_MX
dc.subject.lcshTechnologyes_MX
dc.titleThe identification of DoS and DDoS attacks to IoT devices in software defined networks by using machine learning and deep learning modelses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Thesis-Genaro-Almaraz-MCC Final.pdf
Size:
3.79 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Carta-Autorizacion-Tesis.pdf
Size:
226.31 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización
Loading...
Thumbnail Image
Name:
Autoria Genaro-Almaraz-MCC-5.pdf
Size:
114.03 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firmas Genaro-Almaraz-MCC.pdf
Size:
339.76 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia