Novel metric-learning methods for generalizable and discriminative few-shot image classification

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorOchoa Ruiz, Gilberto
dc.contributor.authorMéndez Ruiz, Mauricio
dc.contributor.catalogerpuelquio/mscuervoes_MX
dc.contributor.committeememberChang Fernández, Leonardo
dc.contributor.committeememberMéndez Vázquez, Andrés
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorOCHOA RUIZ, GILBERTO; 352103
dc.date.accepted2021-12-07
dc.date.accessioned2023-06-22T15:00:42Z
dc.date.available2023-06-22T15:00:42Z
dc.date.issued2021-12-09
dc.description.abstractFew-shot learning (FSL) is a challenging and relatively new technique that specializes in problems where we have little amount of data. The goal of these methods is to classify categories that have not been seen before with just a handful of labeled samples. Recent works based on metric-learning approaches benefit from the meta-learning process in which we have episodic tasks conformed by a support set (training) and a query set (test), and the objective is to learn a similarity comparison metric between those sets. Metric learning methods have demonstrated that simple models can achieve good performance. However, the feature space learned by a given metric learning approach may not exploit the information given by a specific few-shot task. Due to the lack of data, the learning process of the embedding network becomes an important part for these models to take better advantage of the similarity metric on a few-shot task. The contributions of the present thesis are three-fold. First, we explore the use of dimension reduction techniques as a way to find significant features in the few-shot task, which allows a better classification. We measure the performance of the reduced features by assigning a score based on the intra-class and inter-class distance, and select the best feature reduction method in which instances of different classes are far away and instances of the same class are close. This method outperforms the metric learning baselines in the miniImageNet dataset by around 2% in accuracy performance. Further on, we propose two different distance-based loss functions for few-shot classification. One is inspired on the triplet-loss function while the other evaluates the embedding vectors from a task using the concepts of intra-class and inter-class distance among the few samples. Extensive experimental results on the miniImagenNet dataset show an increase on the accuracy performance compared with other metric-based FSL methods by a margin of 2%. Lastly, we evaluate the generalization ca- pabilities of meta-learning based FSL on two real-life medical datasets with small availability of data. It has been repeatedly showed that deep learning (DL) methods trained on a dataset don’t generalize well to datasets from other domains or even to similar datasets, due to the data distribution shifts. We propose the use of a meta-learning based FSL approach to alleviate these problems by demonstrating, using two datasets of kidney stones samples acquired with different endoscopes and different acquisition conditions, that such methods are indeed capable of handling domain shifts. Where deep learning based methods fail to generalize to instances of the same class but from different data distributions, we prove that FSL is capable of generalizing without a large decrease on performance. This method is capable of doing remarkably well even under the very limited data conditions, attaining an accuracy of 74.38% and 88.52% in the 5-way 5-shot and 5-way 20-shot settings respectively, while traditional DL methods attained an accuracy of 45% in the same data.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||330413es_MX
dc.identifier.citationMéndez Ruiz, M. (2021). Novel metric-learning methods for generalizable and discriminative few-shot image classification [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650931es_MX
dc.identifier.cvu1053812es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650931
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::DISPOSITIVOS DE TRANSMISIÓN DE DATOSes_MX
dc.subject.keywordFew-shot learninges_MX
dc.subject.keywordMetric-learninges_MX
dc.subject.keywordImage Classificationes_MX
dc.subject.lcshSciencees_MX
dc.titleNovel metric-learning methods for generalizable and discriminative few-shot image classificationes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
Tesis Mauricio Mendez Ruiz.pdf
Size:
4.5 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
66.68 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
Thesis_signatures_Mauricio.pdf
Size:
190.95 KB
Format:
Adobe Portable Document Format
Description:
Hoja de Firmas
Loading...
Thumbnail Image
Name:
Autoria Mauricio Mendez Ruiz.pdf
Size:
37.32 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia