Comparing Databases for the Prediction of Student’s Academic Performance using Data Science on the Novel Educational Model Tec21 at Tecnológico de Monterrey

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorHernández Gress, Neil
dc.contributor.authorLara Castor, Miguel Andrés
dc.contributor.catalogertolmquevedo, emipsanchezes_MX
dc.contributor.committeememberBatres Prieto, Rafael
dc.contributor.committeememberGarza Villareal, Sara Elena
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorCeballos Cancino, Héctor Gibrán
dc.creatorHERNANDEZ GRESS, NEIL; 21847
dc.date.accepted2021-06-15
dc.date.accessioned2022-09-22T03:36:19Z
dc.date.available2022-09-22T03:36:19Z
dc.date.created2019-11-01
dc.date.issued2021-06
dc.description.abstractMany studies have been made on the prediction of student's academic performance using Data Science. The students with poor academic performance as well as dropout students make a huge impact on the graduation rates, reputation, and finances of an educational institution. These studies take the advantage of the digitization of the admission and academic data of the students and the increasing computational power. However, since August 2019 Tecnologico de Monterrey has been doing it using entrance tests called Initial Evaluations. Unfortunately, the Initial evaluations did not provide useful predictions for the students of the fall semester in 2019. Therefore, this study aimed to compare the Initial Evaluations and the admissions data using Data Science models to predict the student's academic performance. The admission data was composed of five databases: Initial Evaluations, Emotions, Curriculum, Admission Exam and Grades of the first semester. A similar methodology to Cross Industry Standard Process for Data Mining was used to compare the models based on admission data and the models based only Initial Evaluations. A large number of experiments were carried out combining different data of admissions, feature reduction techniques and classification models. The experiments showed that the models based on admission data predicts the student's academic performance with higher accuracy than the models based only on Initial Evaluations. Nevertheless, some variables of the Initial Evaluations were relevant to the models based on admission data. Moreover, the accuracy of the experiments was in the range of the results from the related studies. The results of this study indicates that the Initial Evaluations provide useful information for the prediction of student's academic performance in the domain of Data Science.es_MX
dc.description.degreeMaestro en Ciencias Computacionaleses_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120317es_MX
dc.identificator7||33||3304||120312es_MX
dc.identifier.citationLara-Castor, M.A. (2021). Comparing Databases for the Prediction of Student’s Academic Performance using Data Science on the Novel Educational Model Tec21 at Tecnológico de Monterrey. (Tesis de Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/649149es_MX
dc.identifier.urihttps://hdl.handle.net/11285/649149
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INFORMÁTICAes_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::BANCOS DE DATOSes_MX
dc.subject.keywordacademic performancees_MX
dc.subject.keyworddata sciencees_MX
dc.subject.keywordpredictionses_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordstudentses_MX
dc.subject.lcshTechnologyes_MX
dc.titleComparing Databases for the Prediction of Student’s Academic Performance using Data Science on the Novel Educational Model Tec21 at Tecnológico de Monterreyes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
ThesisReport4thSemester_v10.pdf
Size:
4.26 MB
Format:
Adobe Portable Document Format
Description:
Tesis Completa
Loading...
Thumbnail Image
Name:
Hoja_de_firmas_tesisv10_MiguelLara_SEGV_17jun21.pdf
Size:
849.35 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas de la tesis
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON_MiguelLara.pdf
Size:
97.2 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia