Modeling of carbon sequestration and productivity for maize and oats crops using artificial neural network

dc.audience.educationlevelPúblico en general/General public
dc.contributor.advisorValiente-Banuet, Juan Ignacio
dc.contributor.authorAguilar Chavez, Fernanda
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberClarke Crespo, Emilio
dc.contributor.committeememberGonzález Viejo, Claudia
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Querétaro
dc.date.accepted2024-11-26
dc.date.accessioned2024-12-31T02:50:59Z
dc.date.issued2024-11-25
dc.description.abstractClimate change presents a critical challenge to global food security, especially as the global population continues to rise. A major driver of this phenomenon is the accumulation of greenhouse gases, particularly CO₂, which intensifies Earth's warming. Key contributors to elevated CO₂ levels include fossil fuel combustion and agricultural activities. However, agricultural systems have the potential to mitigate this effect by capturing atmospheric CO₂. Notably, few models account for the net CO₂ flux in agricultural systems, which is critical for understanding their true carbon sequestration potential. This study introduces a machine learning-based approach to model CO₂ sequestration and productivity in two forage crops, a variety of maize (Zea mays) and oats (Avena sativa), under diverse environmental conditions. The model leverages critical variables such as degree days, NDVI, and water balance. Using an artificial neural network (ANN), the study achieved robust predictive accuracy for both crops, with determination coefficients (R) of 0.95 for maize and 0.96 for oats, and low mean squared errors (MSE = 0.02). These results highlight the model’s high performance and reliability, offering a valuable tool for predicting carbon sequestration and productivity in forage crops while addressing a key gap in net CO₂ flux modeling.
dc.description.degreeMaster of Science In Biotechnology
dc.format.mediumTexto
dc.identifier.citationAguilar Chavez, F. (2024). Modeling of carbon sequestration and productivity for maize and oats crops using artificial neural network [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702956
dc.identifier.urihttps://hdl.handle.net/11285/702956
dc.identifier.urihttps://doi.org/10.60473/ritec.32
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0
dc.subject.keywordMachine learning
dc.subject.keywordCarbon content on plants
dc.subject.keywordArtificial Nerual Networks
dc.subject.keywordCrop productivity
dc.subject.keywordCO2
dc.subject.lcshTechnology
dc.titleModeling of carbon sequestration and productivity for maize and oats crops using artificial neural network
dc.typeTesis de Maestría / master Thesis

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
AguilarChavez_TesisMaestriapdfa.pdf
Size:
897.25 KB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
AguilarChavez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
147.96 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
AguilarChavez_CartaAutorizacionpdfa.pdf
Size:
5.31 MB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia