Histopathological image classification using deep learning

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorMartínez Ledesma, Juan Emmanuel
dc.contributor.authorArredondo Padilla, Braulio
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberTamez Peña, José Gerardo
dc.contributor.committeememberSantos Díaz, Alejandro
dc.contributor.committeememberMartínez Torteya, Antonio
dc.contributor.departmentEscuela de Ingeniería y cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.date.accessioned2022-05-26T20:05:54Z
dc.date.available2022-05-26T20:05:54Z
dc.date.created2020
dc.date.embargoenddate2021-11-24
dc.date.issued2020-11
dc.description.abstractThis thesis presents a study of digital pathology classification using and combining several techniques of machine learning and deep learning. Cancer is one of the most common causes of death around the world. One of the main complications of the disease is the prediction in the final stage. Nowadays there are many different studies to obtain a correct diagnosis on time. Some of these studies are tissue biopsies. These samples are analyzed by a pathologist, which must observe pixel by pixel a whole image of high dimensions to give a diagnostic of the disease, including stage and class. This activity takes weeks, even for experts, because usually several samples are extracted from a single patient. To speed up and facilitate this process, several models have been developed for digital pathology classification. With these models, it is easier to discard many patient slides than the traditional method, then, the main activity for a pathologist is to confirm a diagnosis with the most relevant or complicated sample. The downside of these models is that most of them are based on deep learning, a technique that is well known for its great performance, but also for its high requirements like graphic processors and memory resources. Consequently, we performed a complete analysis of several convolutional neural networks used in different ways to compare outcomes and efficiency. In addition, we include techniques such as recurrent neural networks and machine learning. Several models of deep learning and machine learning are presented as alternatives to convolutional neural networks, including 5 computer vision techniques. The main objective of our project is to perform a real alternative capable to achieve similar outcomes to deep learning with limited resources. The experiments were successful, including a real alternative for deep learning for the classification of 3 different types of cancer with an area under the curve higher than 90%.es_MX
dc.description.degreeMaestro en Ciencias de la Computaciónes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationArredondo-Padilla, B. https://github.com/braulioarredondo (2020). Histopathological image classification using deep learning (Master’s dissertation). Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, México. https://hdl.handle.net/11285/648405es_MX
dc.identifier.cvu965741es_MX
dc.identifier.orcid0000-0002-1891-3022es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648405
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACyTes_MX
dc.relation.impreso2020-11-24
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.urlhttps://github.com/braulioarredondo/Histopathological-Image-Classification-using-Deep-Learninges_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordHistopathologyes_MX
dc.subject.keywordConvolutional Neural Networkses_MX
dc.subject.lcshTechnologyes_MX
dc.titleHistopathological image classification using deep learninges_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Braulio_Arredondo_Tesis.pdf
Size:
9.22 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
114.03 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Braulio_Arredondo_Firmas.pdf
Size:
471.32 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia