Design of a proprietary self driving car platform and development of autonomous driving algorithms based on computational vision and deep neural networks

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorAceves López, Alejandro
dc.contributor.authorAguilar Aldecoa, Aldo Iván
dc.contributor.catalogerpuelquio, emipsanchezes_MX
dc.contributor.committeememberGonzález Mendoza, Miguel
dc.contributor.committeememberGonzález Hernández, Hugo Gustavo
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Ciudad de Méxicoes_MX
dc.creatorACEVES LOPEZ, ALEJANDRO; 120834
dc.date.accepted2021-06-08
dc.date.accessioned2022-09-26T21:50:40Z
dc.date.available2022-09-26T21:50:40Z
dc.date.created2021-05-27
dc.description.abstractThis research project presents a detailed description of the design and development of the first small-sized self driving development platform at the ITESM Campus Estado de México. The implemented hardware and software is presented based on the state of the art research platforms. Additionally, the required sensor and instrumentation implementation is described as well as the platform's mechanic and electric design. Moreover, the dynamic identification of the vehicle actuators is presented for the linear velocity control of the platform however no clear evidence of a linear dynamic behavior could be identified, leading to the implementation of a herustically tuned PI velocity control system. Specific Computer Vision (grayscale color thresholding) and Deep Neural Network (U-Net semantic segmentation) based road lane segmentation mechanisms were developed, tested and validated. These segmentation mechanisms served as the main input of the final autonomous driving system proposal based on a road lane following strategy. Finally, a well-defined autonomous driving performance evaluation methodology is described and implemented to compare the proposed systems response, identifying comparable performances between CV and DNN segmentation systems.es_MX
dc.description.degreeMaestro en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3313||331317es_MX
dc.identifier.citationAguilar Aldecoa, A. (2021). Design of a proprietary self driving car platform and development of autonomous driving algorithms based on computational vision and deep neural networks. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/649735es_MX
dc.identifier.urihttps://hdl.handle.net/11285/649735
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA E INGENIERÍA MECÁNICAS::OPERACIONES MECANIZADASes_MX
dc.subject.keywordroad lane followeres_MX
dc.subject.keywordsmall-sized autonomous vehiclees_MX
dc.subject.keywordcomputer visiones_MX
dc.subject.keywordconvolutional neural networkses_MX
dc.subject.keywordroad segmentationes_MX
dc.subject.keywordproprietary platformes_MX
dc.subject.lcshTechnologyes_MX
dc.titleDesign of a proprietary self driving car platform and development of autonomous driving algorithms based on computational vision and deep neural networkses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
AguilarAldecoa_TesisMaestriapdfa.pdf
Size:
60.1 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
AguilarAldecoa_ActadeGradoyDeclaraciondeAutoriapdfa.pdf
Size:
890.09 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-AldoAguilar.pdf
Size:
105.5 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia