Analysis of data-driven diabetes subgroups using machine learning for prediction of glycemic control and complications

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorMontesinos Silva, Luis Arturo
dc.contributor.authorNasser Kadamani, Sharif
dc.contributor.catalogerpuemcuervo, emimayorquines_MX
dc.contributor.committeememberAguilar Salinas, Carlos Alberto
dc.contributor.committeememberTamez Peña, José Gerardo
dc.contributor.committeememberTreviño Alvarado, Víctor Manuel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorSantos Díaz, Alejandro
dc.date.accepted2023-06-14
dc.date.accessioned2025-02-19T21:33:33Z
dc.date.embargoenddate2024-06-14
dc.date.issued2023-06-14
dc.description.abstractDiabetes is a long-term illness that affects the metabolism and causes high blood sugar levels. This can result in severe harm to vital organs such as blood vessels, the heart, kidneys, eyes, and nerves over time. Type 2 diabetes is the most prevalent form, typically found in adults, and it develops when the pancreas is unable to produce enough insulin or when the body is unable to effectively use the insulin it produces, resulting in insulin resistance. Machine learning principles have been applied to develop algorithms that support predictive models for the risk of developing certain diseases, including diabetes, which has become a global pandemic. The management of this disease following a uniform treatment algorithm is usually linked to evolved treatment failure and the development of diabetic complications, so it has become necessary to create algorithms that consider the clinical characterization of the patient, which would be possible due to the recent advancements in the knowledge of the genomic architecture of diabetes and its complications. This research work aims to use machine learning techniques for classification to study the subgroups, generated through clustering techniques proposed by previous studies, to develop a continuation that allows the finding of patterns within subgroups for the generation of a model able to predict complications and the response to certain treatments of a patient given its clinical characterization, that is phenotypic data. This was done in collaboration with the Unidad de Investigación de Enfermedades Metabólicas (UIEM), which is part of the Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), which provided data from cohorts of diabetic patients, as well as medical knowledge and feedback from health professionals. In this study, five clusters or data-driven diabetes subgroups were identified in a Mexican cohort based on six clinical characteristics. It is shown that it is possible to obtain similar subgroups to those found in other studies by using METS-IR and METS-VF instead of HOMA-IR and HOMA2-β formulas. These subgroups can be associated with different risks of complications, and progression rates from treatments, which might have relevance in advancing toward precision medicine. However, after including these subgroups in the training of classification models to predict glycemic control and assess the presence of complications, the performance of the models remained similar, that is no noticeable improvement was presented. This study showed that it is possible to build models that predict glycemic control after three months of initiating treatment with good performances, as well as create models that classify the presence of neuropathy. On the other hand, the generation of classification models for nephropathy and retinopathy did not yield acceptable performances.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationNasser Kadamani, S. (2023). Analysis of data-driven diabetes subgroups using machine learning for prediction of glycemic control and complications, [Tesis Maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703200
dc.identifier.cvu1133974es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5459-8920es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703200
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordDiabeteses_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordClusteringes_MX
dc.subject.keywordTreatment Responsees_MX
dc.subject.lcshTechnologyes_MX
dc.titleAnalysis of data-driven diabetes subgroups using machine learning for prediction of glycemic control and complicationses_MX
dc.typeTrabajo de grado, Maestría / master Degree Workes_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Nasser Kadamani_Carta de Autorizacion de Uso de Obra.pdf
Size:
88.91 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización
Loading...
Thumbnail Image
Name:
Nasser Kadamani _Tesis.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
Nasser Kadamani _Firmas acta de grado.pdf
Size:
252.11 KB
Format:
Adobe Portable Document Format
Description:
Firmas acta de grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia