Multimodal data fusion algorithm for image classification
| dc.audience.educationlevel | Investigadores/Researchers | |
| dc.contributor.advisor | Vargas Rosales, César | |
| dc.contributor.author | Beder Sabag, Taleb | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Pérez García, Benjamín de Jesús | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.date.accepted | 2024-12-02 | |
| dc.date.accessioned | 2024-12-14T05:38:40Z | |
| dc.date.issued | 2024-11 | |
| dc.description | 0000-0003-1770-471X | |
| dc.description.abstract | IImage classification algorithms are a tool that can be implemented on a variety of research sectors, some of these researches need an extensive amount of data for the model to obtain appropriate results. A work around this problem is to implement a multimodal data fusion algorithm, a model that utilizes data from different acquisition frameworks to complement for the missing data. In this paper, we discuss about the generation of a CNN model for image classification using transfer learning from three types of architectures in order to compare their results and use the best model, we also implement a Spatial Pyramid Pooling layer to be able to use images with varying dimensions. The model is then tested on three uni-modal data-sets to analyze its performance and tune the hyperparameters of the model according to the results. Then we use the optimized architecture and hyperparameters to train a model on a multimodal data-set. The aim of this thesis is to generate a multimodal image classification model that can be used by researchers and people that need to analyze images for their own cause, avoiding the need to implement a model for a specific study. | |
| dc.description.degree | Master of Science in Engineering Science Monterrey, | |
| dc.format.medium | Texto | |
| dc.identifier.citation | Beder Sabag, T. (2024), Multimodal data fusion algorithm for image classification [tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702926 | |
| dc.identifier.cvu | 1276959 | |
| dc.identifier.orcid | 0009-0000-0737-8477 | |
| dc.identifier.uri | https://hdl.handle.net/11285/702926 | |
| dc.identifier.uri | https://doi.org/10.60473/ritec.3 | |
| dc.language.iso | spa | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0 | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS | |
| dc.subject.keyword | Machine Learning | |
| dc.subject.keyword | Image Classification | |
| dc.subject.keyword | Multimodal databases | |
| dc.subject.keyword | CNN | |
| dc.subject.lcsh | Technology | |
| dc.title | Multimodal data fusion algorithm for image classification | |
| dc.type | Tesis de Maestría / master Thesis |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- BaderSabag_TesisMaestriapdfa.pdf
- Size:
- 6.38 MB
- Format:
- Adobe Portable Document Format
Loading...
- Name:
- BederSabag_ActaGradoDeclaracionAutoriapdfa.pdf
- Size:
- 265.87 KB
- Format:
- Adobe Portable Document Format
Loading...
- Name:
- Taleb Beder Sabag Carta Autorizacion.pdf
- Size:
- 105.08 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

