Stiffness modification in compliant joints with the use of mechanical metamaterials and the aid of machine learning

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorCuan Urquizo, Enrique
dc.contributor.authorCáceres Cáceres, Christian Ricardo
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberUrbina Coronado, Pedro Daniel
dc.contributor.committeememberJiménez Martínez, Moisés
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorAlfaro Ponce, Mariel
dc.date.accepted2021-12-03
dc.date.accessioned2022-05-26T22:01:27Z
dc.date.available2022-05-26T22:01:27Z
dc.date.issued2020-02-10
dc.description.abstractCompliant joints (CJs) corresponds of a type of mechanisms which are designed with differ ent types of flexure hinges (F Hs), causing a notorious variation in motion ranges. These F Hreacts towards external forces giving them certain movement limited by the material or design of them. These factors can be represented as the stiffness that they have. With the usage of certain techniques this stiffness can be improved. In this research, we propose the use of spe cific 2D lattice metamaterials with different unit cell geometries and orientations to change the resultant stiffness. The 2D lattices used were the square honeycomb lattice, the re-entrant honeycomb lattice and the hexagonal honeycomb lattice. For the mechanical tests, some of the lattices with a specific unit cell orientation but similar relative densities were evaluated. In addition the use of artificial intelligence (AI), specifically the machine learning (ML) field which helped us to predict desired mechanical parameters of the CJs designed. Various ML algorithms were tested and compared with the finite element analysis (F EA) simulations of the CJs, to evaluate the prediction accuracy between learning algorithms. Finally, with the predictions gathered of a small and a larger dataset based only in simulations, the development of an automated design process based on the use of latticed CJs was achieved.es_MX
dc.description.degreeMaster of Science in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3312||331208es_MX
dc.identifier.citationCáceres, Cáceres, C.R. (2021). Stiffness modification in compliant joints with the use of mechanical metamaterials and the aid of machine learning [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu1045557es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648413
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE MATERIALES::PROPIEDADES DE LOS MATERIALESes_MX
dc.subject.keywordCompliant Jointses_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordMechanical Metamaterialses_MX
dc.subject.lcshSciencees_MX
dc.titleStiffness modification in compliant joints with the use of mechanical metamaterials and the aid of machine learninges_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
MIT-MasterThesisChristianCáceres.pdf
Size:
20.07 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON (1).docx
Size:
40.35 KB
Format:
Microsoft Word XML
Description:
Loading...
Thumbnail Image
Name:
Firmas_ChristianCáceres-WI.pdf
Size:
742.23 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia