Environmental assessment of urban rivers through a dual lens approach: machine learning based water quality analysis and metagenomic characterization of contamination effects

dc.audience.educationlevelPúblico en general/General public
dc.audience.educationlevelOtros/Other
dc.contributor.advisorGradilla Hernández, Misael Sebastián
dc.contributor.authorFernández del Castillo Barrón, Alberto
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberGarcía González, Alejandro
dc.contributor.committeememberPacheco Moscoa, Adriana
dc.contributor.committeememberBrown, Lee
dc.contributor.committeememberOscar Alejandro Aguilar Jiménez
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorSenés Guerrero, Carolina
dc.date.accepted2024-12-03
dc.date.accessioned2025-01-04T23:09:07Z
dc.date.embargoenddate2026-01-04
dc.date.issued2024-12-03
dc.descriptionhttps://orcid.org/0000-0002-8236-4400
dc.description.abstractUrban rivers are critical ecosystems increasingly threatened by pollution. Effective water quality monitoring and contamination assessment are essential for informed management decisions. The Santiago River, a key hydrologic system in Mexico, has become one of the country’s most polluted rivers, posing significant ecological risks and public health concerns for nearby communities. This study underscores the urgent need for comprehensive environmental evaluation and enhanced monitoring approaches. Chapter one introduces the motivation behind monitoring water quality in highly polluted rivers, presenting the problem statement and contextual background of the Santiago River basin. It outlines the research question and provides an overview of the proposed dual-lens approach: combining water quality analysis via machine learning algorithms with metagenomic characterization of contamination effects. Key contributions of this work to the field are also highlighted. Chapter two reviews global monitoring strategies from highly polluted rivers, focusing on nine rivers across developed and developing countries to offer a comparative perspective on water quality management needs. In Chapter three, regression and classification machine learning models are developed to predict the Santiago River Water Quality Index (SR-WQI), designed as complementary tools to strengthen the current monitoring program. Chapter four analyzes the historical water quality patterns of the Santiago River to identify the most variable and representative data for training machine learning models. This chapter also reveals that redundant data can hinder model performance by leading to overfitting. Chapter five investigates spatial variations in the microbial composition of Santiago River sediments and examines correlations with water quality. Using high-throughput sequencing, potential microbial biomarkers were identified and impacts of physicochemical parameters and heavy metals on microbial communities were assessed. Finally, chapter five highlight the main findings of this thesis and covers some limitations, perspectives for future research and final remarks.
dc.description.degreeDoctor of Philosophy In Biotechnology
dc.format.mediumTexto
dc.identificator330811
dc.identifier.citationFernández del Castillo Barrón, A. (2024). Environmental assessment of urban rivers through a dual lens approach: machine learning based water quality analysis and metagenomic characterization of contamination effects (Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/702967
dc.identifier.cvu966466
dc.identifier.orcidhttps://orcid.org/0000-0003-4050-6797
dc.identifier.urihttps://hdl.handle.net/11285/702967
dc.identifier.urihttps://doi.org/10.60473/ritec.43
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.embargoreasonContiene información que aún no ha sido publicada.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::INGENIERÍA Y TECNOLOGÍA DEL MEDIO AMBIENTE::CONTROL DE LA CONTAMINACIÓN DEL AGUA
dc.subject.keywordWater quality
dc.subject.keywordUrban river
dc.subject.keywordEnvironmental assesment
dc.subject.keywordMachine learning
dc.subject.keywordMetagenomics
dc.subject.lcshTechnology
dc.titleEnvironmental assessment of urban rivers through a dual lens approach: machine learning based water quality analysis and metagenomic characterization of contamination effects
dc.typeTesis Doctorado / doctoral Thesis

Files

Original bundle

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Name:
FernandezdelCastillo_TesisDosctoradopdfa.pdf
Size:
11.14 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
FernandezdelCastillo_DeclaraciónAutoriapdfa.pdf
Size:
127.21 KB
Format:
Adobe Portable Document Format
Description:
Declaración Autoría
Loading...
Thumbnail Image
Name:
Alberto Fernández del Castillo Barrón Acta de Grado.pdf
Size:
524.76 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
Alberto Fernández del Castillo Barrón Carta autorización.pdf
Size:
686.82 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia