Automatic detection and segmentation of prostate cancer using deep learning techniques

dc.audience.educationlevelPúblico en general/General public
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelOtros/Other
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.authorQuihui Rubio, Pablo César
dc.contributor.catalogerpuemcuervo, emimayorquin
dc.contributor.committeememberAlfaro Ponce, Mariel
dc.contributor.committeememberMata Miquel, Christian
dc.contributor.committeememberHinojosa Cervantes, Salvador Miguel
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorOchoa Ruiz, Gilberto
dc.date.accepted2023-06-14
dc.date.accessioned2025-03-21T21:32:08Z
dc.date.embargoenddate2024-06-14
dc.date.issued2023-05-20
dc.description.abstractProstate cancer is a major cause of death among men worldwide, and detecting it usually involves invasive procedures. Magnetic resonance imaging (MRI) has become a common research area for detecting this cancer because it represents a less invasive option. However, segmenting the prostate gland from MRI images can be a complicated task that requires expert opinions, which is both time-consuming and inconsistent. This thesis proposes a novel deep-learning architecture to automate and obtain accurate and reliable segmentation of the prostate gland in MRI scans. Precise segmentation is crucial for radiotherapy planning, as it determines the tumor’s location and size, which affects treat- ment effectiveness and reduces radiation exposure to surrounding healthy tissues. Therefore, a thorough comparison between architectures from the state-of-the-art is also performed. Convolutional neural networks have shown great potential in medical image segmenta- tion, but the uncertainty associated with their predictions is often overlooked. Therefore, this work proposes a novel approach incorporating uncertainty quantification to ensure reliable and trustworthy results. The models were evaluated on a dataset of prostate T2-MRI scans obtained in collab- oration with the Centre Hospitalarie Dijon and Universitat Politecnica de Catalunya. The results showed that the proposed architecture FAU-Net outperforms most existing models in the literature, with an improvement of 5% in the Dice Similarity Coefficient (DSC) and In- tersection over Union (IoU). However, the best model overall was R2U-Net, which achieved segmentation accuracy and uncertainty estimation values of 85% and 76% for DSC and IoU, respectively, with an uncertainty score lower than 0.05. In addition to the proposed model and comparison between models for prostate seg- mentation and uncertainty quantification, a web application was presented for easier access to the trained models in a clinical setting. This web app would allow medical professionals to upload MRI scans of prostate cancer patients and obtain accurate and reliable segmentation quickly and easily. This would reduce the time and effort required for manual segmentation and improve patient outcomes by facilitating better treatment planning. Overall, this work presents a novel strategy for prostate segmentation using deep learn- ing models and uncertainty quantification. The proposed method provides a reliable and trust- worthy segmentation while quantifying the uncertainty associated with the predictions. This research can benefit prostate cancer patients by improving treatment planning and outcomes.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3314||331499es_MX
dc.identifier.citationQuihui Rubio, P. C. (2023). Automatic detection and segmentation of prostate cancer using deep learning techniques. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703404
dc.identifier.urihttps://hdl.handle.net/11285/703405
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsembargoedAccesses_MX
dc.rights.embargoreasonPeriodo predeterminado para revisión de contenido susceptible de protección, patente o comercializaciónes_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA MÉDICA::OTRASes_MX
dc.subject.keywordProstate Canceres_MX
dc.subject.keywordSegmentationes_MX
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordBiomedical Imaginges_MX
dc.subject.lcshTechnologyes_MX
dc.titleAutomatic detection and segmentation of prostate cancer using deep learning techniqueses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
QuihuiRubio_CartaAutorizacionpdf
Size:
76.63 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
QuihuiRubio_FirmasActadeGrado-CartaAutorizacion.pdf
Size:
489.34 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado-Carta Autorización
Loading...
Thumbnail Image
Name:
QuihuiRubio_Tesis.pdf
Size:
36.15 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia