Deep learning applied to the detection of traffic signs in embedded devices

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorFuentes Aguilar, Rita Quetziquel
dc.contributor.authorRojas García, Javier
dc.contributor.catalogeremimmayorquin
dc.contributor.committeememberMorales Vargas, Eduardo
dc.contributor.committeememberIzquierdo Reyes, Javier
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Eugenio Garza Sadaes_MX
dc.date.accepted2024-05-29
dc.date.accessioned2025-08-06T18:11:46Z
dc.date.issued2024-06
dc.descriptionhttps://orcid.org/0000-0003-2559-539X
dc.description.abstractComputer vision is an integral component of autonomous vehicle systems, enabling tasks such as obstacle detection, road infrastructure recognition, and pedestrian identification. Autonomous agents must perceive their environment to make informed decisions and plan and control actuators to achieve predefined goals, such as navigating from point A to B without incidents. In recent years, there has been growing interest in developing Advanced Driving Assistance Systems like lane-keeping assistants, emergency braking mechanisms, and traffic sign detection systems. This growth is driven by advancements in Deep Learning techniques for image processing, enhanced hardware capabilities for edge computing, and the numerous benefits promised by autonomous vehicles. This work investigates the performance of three recent and popular object detectors from the YOLO series (YOLOv7, YOLOv8, and YOLOv9) on a custom dataset to identify the optimal architecture for TSD. The objective is to optimize and embed the best-performing model on the Jetson Orin AGX platform to achieve real-time performance. The custom dataset is derived from the Mapillary Traffic Sign Detection dataset, a large-scale, diverse, and publicly available resource. Detection of traffic signs that could potentially impact the longitudinal control of the vehicle is focused on. Results indicate that YOLOv7 offers the best balance between mean Average Precision and inference speed, with optimized versions running at over 55 frames per second on the embedded platform, surpassing by ample margin what is often considered real-time (30 FPS). Additionally, this work provides a working system for real-time traffic sign detection that could be used to alert unattentive drivers and contribute to reducing car accidents. Future work will explore further optimization techniques such as quantization-aware training, conduct more thorough real-life scenario testing, and investigate other architectures, including vision transformers and attention mechanisms, among other proposed improvements.es_MX
dc.description.degreeMaster of Science in Engineeringes_MX
dc.format.mediumTextoes_MX
dc.identificator339999||330412
dc.identifier.citationRojas Gatcía, J. (2024) Deep learning applied to the detection of traffic signs in embedded devices. [Tesis mestría] Instituto Tecnológico y de Estudios Superiores de Monterrey. Nuevo León, Monterrey. Recuperado de: https://hdl.handle.net/11285/703923
dc.identifier.cvu1239249es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703923
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::OTRAS ESPECIALIDADES TECNOLÓGICAS::OTRAS
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::DISPOSITIVOS DE CONTROL
dc.subject.keywordComputer Visiones_MX
dc.subject.keywordObject Detectiones_MX
dc.subject.keywordYOLOes_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordEmbedded Deviceses_MX
dc.subject.lcshTechnologyes_MX
dc.titleDeep learning applied to the detection of traffic signs in embedded deviceses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
RojasGarcıa_TesisMaestria.pdfa.pdf
Size:
4.76 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
RojasGarcıa_CartaAutorizacion.pdfa.docx
Size:
182.26 KB
Format:
Microsoft Word XML
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
RojasGarcıa_FirmasActadeGrado.pdfa.pdf
Size:
95.8 KB
Format:
Adobe Portable Document Format
Description:
Firmas Acta de Grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia