Pre-diagnosis of diabetic retinopathy implementing supervised learning algorithms using an ocular fundus Latin-American dataset for cross-data validation

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorFuentes Aguilar, Rita Quetziquel
dc.contributor.authorDe la Cruz Espinosa, Emanuel
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberGarcía González, Alejandro
dc.contributor.committeememberOchoa Ruiz, Gilberto
dc.contributor.committeememberAbaunza González, Hernán
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorFUENTES AGUILAR, RITA QUETZIQUEL; 229297
dc.date.accepted2022-12-05
dc.date.accessioned2023-03-03T14:16:32Z
dc.date.available2023-03-03T14:16:32Z
dc.date.issued2021-02
dc.descriptionhttps://orcid.org/0000-0003-2559-539Xes_MX
dc.description.abstractNowadays diabetes is a disease with worldwide presence and high mortality rate, causing a big social and economic impact. One of the major negative effects of diabetes is visual loss due to diabetic retinopathy (DR). To prevent this condition is necessary to identify referable patients by screening for DR, and complementing with an Optic Coherence Tomography (OCT), that is another study to perform an early detection of blindness doing several longitudinal scans at a series of lateral locations to generate a map of reflection sites in the sample and display it as a two-dimensional image achieving transmission images in turbid tissue. Regrettably the number of ophthalmologists and OCT devices is not enough to provide an adequate health care to the diabetic population. Although there exist AI systems capable of do DR screening, they do not aim the assessment specifically in macula area considering visible and proliferated anomalies, signs of high damage and late intervention. This work presents three surpevised machine learnig algorithms; a Random Forest (RF) classifier, a Convolutional Neural Network (CNN) model, and a transfer learning (TL) pretrained model able to sort fundus images in three classes as an fundus images exclusive database is labeled. Processing techniques such as channel splitting, color space transforms, histogram and spatial based filters and data augmentation are used in order to detect presence of diabetic retinopathy. The stages of this work are: Publicly available dataset debugging, macular segmentation and cropping, data pre-processing, features extraction, model training, test and validation performance evaluation with a exclusive Latin-American dataset considering accuracy, sensitivity and specificity as metrics. The best results achieved are a 61.22% of accuracy, 86.67% of sensitivity and 89.47% of specificity.es_MX
dc.description.degreeMaster of Science in Engineering Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationDe la Cruz, E. (2022). Pre-diagnosis of diabetic retinopathy implementing supervised learning algorithms using an ocular fundus Latin-American dataset for cross-data validation. (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/650288es_MX
dc.identifier.cvu1109931es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-5904-0088es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650288
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordDiabetic retinopathyes_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordDeep Learninges_MX
dc.subject.keywordLatin-American datasetes_MX
dc.subject.lcshSciencees_MX
dc.titlePre-diagnosis of diabetic retinopathy implementing supervised learning algorithms using an ocular fundus Latin-American dataset for cross-data validationes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
DelaCruzEspinoza_TesisMaestriapdfa.pdf
Size:
33.73 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
DelaCruzEspinoza_ActadeGradoTesisMaestriapdfa.pdf
Size:
982.67 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
270.14 KB
Format:
Adobe Portable Document Format
Description:
Declaración de Acuerdo para Uso de Obra

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia