Trajectory planning for mobile robot in dynamic environment using LSTM neural network

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorGómez Espinosa, Alfonso
dc.contributor.authorMolina Leal, Alejandra
dc.contributor.catalogertolmquevedoes_MX
dc.contributor.committeememberCuan Urquizo, Enrique
dc.contributor.committeememberCruz Ramírez, Sergio Rolando
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorEscobedo Cabello, Jesús Arturo
dc.date.accepted2021-06-03
dc.date.accessioned2021-11-16T21:48:38Z
dc.date.available2021-11-16T21:48:38Z
dc.date.created2021-05-03
dc.date.embargoenddate2022-06-03
dc.date.issued2021-06-03
dc.description.abstractAutonomous mobile robots are an important focus of current research due to the advantages they bring to the industry, such as performing dangerous tasks with greater precision than humans. An autonomous mobile robot must be able to generate a collision-free trajectory while avoiding static and dynamic obstacles from the specified start location to the target location. Machine Learning, a sub-field of Artificial Intelligence, is applied to create a Long Short-Term Memory (LSTM) neural network that is implemented and executed to let a mobile robot find the trajectory between two points and navigate while avoiding a dynamic obstacle. The input of the network is the distance between the mobile robot and the obstacles thrown by the LiDAR sensor, the desired target location, and the mobile robot location with respect to the odometry reference frame. Using the model to learn the mapping between input and output in the sample data, the linear and angular velocity of the mobile robot are obtained. The mobile robot and its dynamic environment are simulated in Gazebo, which is an open-source 3D robotics simulator. Gazebo can be synchronized with ROS (Robot Operating System). The computational experiments show that the network model can plan a safe navigation path in a dynamic environment.es_MX
dc.description.degreeMaestra en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationMolina, A. (2021) Trajectory Planning for Mobile Robot in Dynamic Environment using LSTM Neural Network (Tesis de Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/641228es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-9324-0457es_MX
dc.identifier.urihttps://hdl.handle.net/11285/641228
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACyTes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.rightsembargoedAccesses_MX
dc.rights.embargoreasonAsí se me indicó en el tutorial para subir mi tesis a RITEC.es_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordMobile robotes_MX
dc.subject.keywordObstacle avoidancees_MX
dc.subject.keywordLSTM neural networkes_MX
dc.subject.keywordDynamic path planninges_MX
dc.subject.lcshTechnologyes_MX
dc.titleTrajectory planning for mobile robot in dynamic environment using LSTM neural networkes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
organized.pdf
Size:
7.4 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Doc 14 Jun 2021, 4.10.pdf
Size:
402.38 KB
Format:
Adobe Portable Document Format
Description:
Authorization

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia