Deep learning and natural language processing for computer aided diagnosis

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorTamez Peña, Jose Gerardo
dc.contributor.authorHussain, Sadam
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberSantos Díaz, Alejandro
dc.contributor.committeememberMartínez Ledesma, Juan Emmanuel
dc.contributor.committeememberBron, Esther E.
dc.contributor.committeememberMery, Domingo
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.date.accepted2025-06
dc.date.accessioned2025-07-22T01:35:12Z
dc.date.embargoenddate2026-07-21
dc.date.issued2025-06
dc.description.abstractMultimodal artificial intelligence (AI) is a cutting-edge technique that integrates diverse modalities, such as imaging and textual data, to enhance classification and regression tasks. This dissertation focuses on the integration, comparison, and evaluation of multimodal AI for breast cancer diagnosis and prognosis. To achieve these objectives, we curated a comprehensive multimodal dataset comprising digital mammograms and corresponding radiological reports. Leveraging this dataset, we introduced and assessed various state-of-the-art (SOTA) multimodal techniques for three key tasks: breast cancer classification, reduction of false-positive biopsies with explainable AI (XAI), and short- term (5-year) risk prediction of breast cancer.In this work, we also introduced a benchmark dataset of radiological reports from breast cancer patients and provided baseline performance evaluations using SOTA machine learning (ML), deep learning (DL), and large language models (LLMs) for BI-RADS category classification. Our approach evaluated the performance of diverse SOTA multimodal architectures, including ResNet, VGG, E!cientNet, MobileNet, and Vision Transformers (ViT). For textual data processing, we employed both general-purpose and domain-specific pretrained LLMs such as BERT, bioGPT, ClinicalBERT, and DeBERTa, which were also integrated into multimodal architectures for enhanced lassification.Notably, our proposed multiview multimodal feature fusion (MMFF) architecture, combining SE-ResNet50 with an artificial neural network (ANN), achieved an AUC of 0.965 for breast cancer classification, significantly outperforming both single-modal and multimodal SOTA architectures. For reducing unnecessary breast biopsies, our multimodal approach achieved an AUC of 0.72, showcasing its clinical utility in minimizing patient burden. Moreover, our ViT and bioGPT-based multimodal architecture achieved an AUC of 0.77 for short-term risk prediction, outperforming the SOTA MIRAI model, which achieved an AUC of 0.59 on our in-house dataset. This work highlights the potential of multimodal AI in advancing breast cancer diagnosis and prognosis, demonstrating its superiority over traditional and unimodal approaches across multiple critical tasks.
dc.description.degreeDoctor of Philosophy in Computer Sciences
dc.format.mediumTexto
dc.identificator220212
dc.identificator120320
dc.identificator330413
dc.identificator320111
dc.identifier.citationHussain, Sadam (2025). Deep learning and natural language processing for computer aided diagnosis [Tesis doctoral]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703887
dc.identifier.urihttps://hdl.handle.net/11285/703887
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.embargoreasonSe solicita el embargo porque algunos capítulos aún no se han publicado y están en proceso.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICO
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::DISPOSITIVOS DE TRANSMISIÓN DE DATOS
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUD::CIENCIAS MÉDICAS::CIENCIAS CLÍNICAS::RADIOLOGÍA
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ELECTRÓNICA::RAYOS X
dc.subject.keywordMultimodal Learning
dc.subject.keywordBreast Cancer Classification
dc.subject.keywordComputer Aided Diagnosis
dc.subject.keywordMedical Image Analysis
dc.subject.keywordBI-RADS Classification
dc.subject.keywordRadiology Report Analysis
dc.subject.lcshTechnology
dc.subject.lcshScience
dc.titleDeep learning and natural language processing for computer aided diagnosis
dc.typeTesis de doctorado

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Hussain_TesisDoctorado_pdfa.pdf
Size:
26.74 MB
Format:
Adobe Portable Document Format
Description:
Tesis Doctorado
Loading...
Thumbnail Image
Name:
Hussain_ActaGrado_pdfa.pdf
Size:
996.34 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
Hussain_CartaAutorizacion.docx
Size:
45.14 KB
Format:
Microsoft Word XML
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia