Tesis de doctorado

Deep learning and natural language processing for computer aided diagnosis

Loading...
Thumbnail Image

Citation

View formats

Share

Bibliographic managers

Abstract

Multimodal artificial intelligence (AI) is a cutting-edge technique that integrates diverse modalities, such as imaging and textual data, to enhance classification and regression tasks. This dissertation focuses on the integration, comparison, and evaluation of multimodal AI for breast cancer diagnosis and prognosis. To achieve these objectives, we curated a comprehensive multimodal dataset comprising digital mammograms and corresponding radiological reports. Leveraging this dataset, we introduced and assessed various state-of-the-art (SOTA) multimodal techniques for three key tasks: breast cancer classification, reduction of false-positive biopsies with explainable AI (XAI), and short- term (5-year) risk prediction of breast cancer.In this work, we also introduced a benchmark dataset of radiological reports from breast cancer patients and provided baseline performance evaluations using SOTA machine learning (ML), deep learning (DL), and large language models (LLMs) for BI-RADS category classification. Our approach evaluated the performance of diverse SOTA multimodal architectures, including ResNet, VGG, E!cientNet, MobileNet, and Vision Transformers (ViT). For textual data processing, we employed both general-purpose and domain-specific pretrained LLMs such as BERT, bioGPT, ClinicalBERT, and DeBERTa, which were also integrated into multimodal architectures for enhanced lassification.Notably, our proposed multiview multimodal feature fusion (MMFF) architecture, combining SE-ResNet50 with an artificial neural network (ANN), achieved an AUC of 0.965 for breast cancer classification, significantly outperforming both single-modal and multimodal SOTA architectures. For reducing unnecessary breast biopsies, our multimodal approach achieved an AUC of 0.72, showcasing its clinical utility in minimizing patient burden. Moreover, our ViT and bioGPT-based multimodal architecture achieved an AUC of 0.77 for short-term risk prediction, outperforming the SOTA MIRAI model, which achieved an AUC of 0.59 on our in-house dataset. This work highlights the potential of multimodal AI in advancing breast cancer diagnosis and prognosis, demonstrating its superiority over traditional and unimodal approaches across multiple critical tasks.

Collections

Loading...

logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

Licencia