BMV stocks return prediction using macro economics variables, technical analysis, and machine learning
dc.audience.educationlevel | Público en general/General public | es_MX |
dc.contributor.advisor | Trejo Rodríguez, Luis Ángel | |
dc.contributor.author | Hinojosa Alejandro, Ramón | |
dc.contributor.cataloger | puemcuervo | es_MX |
dc.contributor.committeemember | Hervet Escobar, Laura | |
dc.contributor.department | School of Engineering and Sciences | es_MX |
dc.contributor.institution | Campus Monterrey | es_MX |
dc.contributor.mentor | Hernández Gress, Neil | |
dc.creator | TREJO RODRIGUEZ, LUIS ANGEL; 59028 | |
dc.date.accepted | 2020-04-01 | |
dc.date.accessioned | 2023-06-05T19:17:15Z | |
dc.date.available | 2023-06-05T19:17:15Z | |
dc.date.issued | 2020-04-01 | |
dc.description | https://orcid.org/0000−0001−9741−4581 | es_MX |
dc.description.abstract | Historical data, macroeconomic variables, technical analysis, and machine learning are some of the tools used to predict the price of shares of companies listed on the Mexican stock ex-change.The present thesis’s purpose is to reach a robust investment strategy, capable of coping with unforeseen events, and maximizing returns by selecting stocks quoted in the Mexican Stock Market. Our strategy predicts stock returns considering the influence of macroeconomic variables filtered by a causal analysis to determine the most significant ones, and a layered architecture, where machine learning methodologies are endowed with technical analysis applied to the stock historical data.The results from this thesis work show profitable strategies that outperform the free-risk rate of return and the Mexican Index performance. Results demonstrate even good performances when unforeseen events are present as the Covid-19 pandemic in 2020-2021. | es_MX |
dc.description.degree | Master of Science in Computer Science | es_MX |
dc.format.medium | Texto | es_MX |
dc.identificator | 5||53||5304||530401 | es_MX |
dc.identifier.citation | Hinojosa Alejandro, R. (2020). BMV stocks return prediction using macro economics variables, technical analysis, and machine learning [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de; https://hdl.handle.net/11285/650801 | es_MX |
dc.identifier.cvu | 1047882 | es_MX |
dc.identifier.orcid | https://orcid.org/0000−0002−4226−6718 | es_MX |
dc.identifier.scopusid | 57315853800 | es_MX |
dc.identifier.uri | https://hdl.handle.net/11285/650801 | |
dc.language.iso | eng | es_MX |
dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
dc.relation.isFormatOf | draft | es_MX |
dc.relation.isreferencedby | REPOSITORIO NACIONAL CONACYT | |
dc.rights | openAccess | es_MX |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
dc.subject.classification | CIENCIAS SOCIALES::CIENCIAS ECONÓMICAS::ACTIVIDAD ECONÓMICA::CONSUMO, AHORRO, INVERSIÓN | es_MX |
dc.subject.keyword | Metaheuristics | es_MX |
dc.subject.keyword | Hyperparameter Tunning | es_MX |
dc.subject.keyword | Causality | es_MX |
dc.subject.keyword | StockMarket Returns | es_MX |
dc.subject.keyword | Forecast | es_MX |
dc.subject.lcsh | Science | es_MX |
dc.title | BMV stocks return prediction using macro economics variables, technical analysis, and machine learning | es_MX |
dc.type | Tesis de maestría |
Files
Original bundle
1 - 2 of 2
Loading...
- Name:
- BMV_stocks_price_prediction_using_macro_economics_variables__technical_analysis__and_machine_learning.pdf
- Size:
- 2.92 MB
- Format:
- Adobe Portable Document Format
- Description:
- Main document
Loading...
- Name:
- CartaAutorizacionTesis-CON.pdf
- Size:
- 81.15 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorizacion Firmada
License bundle
1 - 1 of 1
Loading...

- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description: