BMV stocks return prediction using macro economics variables, technical analysis, and machine learning

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorTrejo Rodríguez, Luis Ángel
dc.contributor.authorHinojosa Alejandro, Ramón
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberHervet Escobar, Laura
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorHernández Gress, Neil
dc.creatorTREJO RODRIGUEZ, LUIS ANGEL; 59028
dc.date.accepted2020-04-01
dc.date.accessioned2023-06-05T19:17:15Z
dc.date.available2023-06-05T19:17:15Z
dc.date.issued2020-04-01
dc.descriptionhttps://orcid.org/0000−0001−9741−4581es_MX
dc.description.abstractHistorical data, macroeconomic variables, technical analysis, and machine learning are some of the tools used to predict the price of shares of companies listed on the Mexican stock ex-change.The present thesis’s purpose is to reach a robust investment strategy, capable of coping with unforeseen events, and maximizing returns by selecting stocks quoted in the Mexican Stock Market. Our strategy predicts stock returns considering the influence of macroeconomic variables filtered by a causal analysis to determine the most significant ones, and a layered architecture, where machine learning methodologies are endowed with technical analysis applied to the stock historical data.The results from this thesis work show profitable strategies that outperform the free-risk rate of return and the Mexican Index performance. Results demonstrate even good performances when unforeseen events are present as the Covid-19 pandemic in 2020-2021.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator5||53||5304||530401es_MX
dc.identifier.citationHinojosa Alejandro, R. (2020). BMV stocks return prediction using macro economics variables, technical analysis, and machine learning [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de; https://hdl.handle.net/11285/650801es_MX
dc.identifier.cvu1047882es_MX
dc.identifier.orcidhttps://orcid.org/0000−0002−4226−6718es_MX
dc.identifier.scopusid57315853800es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650801
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by/4.0es_MX
dc.subject.classificationCIENCIAS SOCIALES::CIENCIAS ECONÓMICAS::ACTIVIDAD ECONÓMICA::CONSUMO, AHORRO, INVERSIÓNes_MX
dc.subject.keywordMetaheuristicses_MX
dc.subject.keywordHyperparameter Tunninges_MX
dc.subject.keywordCausalityes_MX
dc.subject.keywordStockMarket Returnses_MX
dc.subject.keywordForecastes_MX
dc.subject.lcshSciencees_MX
dc.titleBMV stocks return prediction using macro economics variables, technical analysis, and machine learninges_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
BMV_stocks_price_prediction_using_macro_economics_variables__technical_analysis__and_machine_learning.pdf
Size:
2.92 MB
Format:
Adobe Portable Document Format
Description:
Main document
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
81.15 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorizacion Firmada

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia