Sensor data fusion for a mobile robot using a neural network algorithm

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorGómez Espinosa, Alfonso
dc.contributor.authorBarreto Cubero, Andrés Javier
dc.contributor.catalogerpuelquio, emipsanchezes_MX
dc.contributor.committeememberCuan Urquizo, Enrique
dc.contributor.committeememberCruz Ramírez, Sergio Rolando
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorEscobedo Cabello, Jesús Arturo
dc.creatorGOMEZ ESPINOSA, ALFONSO; 57957
dc.date.accepted2021-06-03
dc.date.accessioned2022-03-25T05:24:48Z
dc.date.available2022-03-25T05:24:48Z
dc.date.created2021-05-03
dc.description.abstractMobile robots must be capable to obtain an accurate map of their surroundings and move within it. To detect different materials that might be undetectable to one sensor but not others it is necessary to have at least two sensors, with this is possible to generate a 2D occupancy map that is as close to reality as possible. In this thesis, an artificial neural network is used to fuse data from a tri-sensor (Intel RealSense Stereo Camera, 2D 360° LiDAR-Light Detection and Ranging Sensor and an HC-SR04 Ultrasonic Sensor) setup capable of detecting glass, polished metals, brick walls, wooden panels and other materials typically found in indoor environments. When a map is to be compiled out of different sensor’s data, it is necessary to implement a preprocessing scheme to filter all the outliers in the data for each sensor. Then, run a data fusion algorithm to integrate all the information into a single, more accurate 2D map that considers all sensor’s information. The Robotis Turtlebot 3 Waffle Pi robot is used as an experimental platform along with Robotic Operating System as the main Human Machine Interface to implement the algorithms. Test results show that with the fusion algorithm implemented, it is possible to detect glass and other obstacles invisible to the LiDAR with an estimated root-mean-square error of 4 cm with multiple sensor configurations.es_MX
dc.description.degreeMaestro en Ciencias de la Ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3313||331399es_MX
dc.identifier.citationBarreto Cubero, A. (2021) Sensor data fusion for a mobile robot using a neural network algorithm. (Tesis de Maestría) Instituto Tecnológico de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/647267es_MX
dc.identifier.cvu1007819es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-8642-6875es_MX
dc.identifier.urihttps://hdl.handle.net/11285/647267
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationCONACyTes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA E INGENIERÍA MECÁNICAS::OTRASes_MX
dc.subject.keywordSensor Data Fusiones_MX
dc.subject.keywordMobile Robotes_MX
dc.subject.keywordArtificial Neural Networkes_MX
dc.subject.keywordImproved LiDARes_MX
dc.subject.keywordOccupancy Grid Mapes_MX
dc.subject.lcshTechnologyes_MX
dc.titleSensor data fusion for a mobile robot using a neural network algorithmes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
BarretoCubero_TesisMaestriaPDFA.pdf
Size:
7.73 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
BarretoCubero_ActadeGradoPDFA.pdf
Size:
519.48 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado
Loading...
Thumbnail Image
Name:
Autorizacion.pdf
Size:
522.42 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia