Wind Resource Assessment with Microscale Models and a Machine Learning Method

dc.audience.educationlevelPúblico en general/General publices_MX
dc.contributor.advisorProbst Oleszewski, Oliver Matthias.
dc.contributor.authorQuiroga Novoa, Pedro Fernando
dc.contributor.catalogertolmquevedo, emipsanchezes_MX
dc.contributor.committeememberHuertas Bolaños, Maria Elena
dc.contributor.departmentEscuela de Ingeniería y Cienciases_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorPreciado Arreola, José Luis
dc.creatorHUERTAS BOLAÑOS, MARIA ELENA; 333833
dc.date.accessioned2022-01-02T01:15:57Z
dc.date.available2022-01-02T01:15:57Z
dc.date.created2020-12
dc.date.issued2020-12
dc.description0000-0003-0075-8295es_MX
dc.description.abstractWind energy has been gaining more prominence among renewable energy sources, as it is an affordable and increasingly reliable technology. The precision in the evaluation of the wind resource is, of course, a fundamental factor to guarantee the continuous development of these types of projects. As installed capacity increases, it is natural that the new wind farms increasingly have to be installed on more complex terrain. Therefore the methodologies that have traditionally been used to predict mean wind speed will be subject to greater uncertainty, given the limitations of the models under these challenging conditions. A more demanding energy industry requires further investigation of reliable and robust methodologies to assess available resources accurately. In this master thesis, two approaches to predicting average wind speed in complex terrain were evaluated. These approaches were wind flow models and statistical methods. Regarding the wind flow models, one year of on-site measurements was used to validate two well-known microscale models, the Wind Atlas Analysis and Application Program (WAsP) and the WindSim model. The performance of each model was evaluated by using a crossprediction methodology. The second approach corresponds to a machine learning method called k-Nearest neighbor (k-NN) regression. As its name implies, measurements from neighboring sites were used to predict the mean speed at a target site. Terrain and climatic features were used as predictors in the method mentioned above. By using the statistical method, the prediction errors were reduced to 1.29%. Further improvements in the accuracy were achieved by implementing a weight-based ensemble model between the WAsP model and the k-NN regression, with an overall percentage error of 1.06% compared with the 5.09% and 4.31% obtained with the WAsP model and the WindSim model, respectively.es_MX
dc.description.degreeMaestro en ciencias de la ingenieríaes_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3322es_MX
dc.identifier.citationQuiroga Novoa, P. F. (2020). Wind resource assessment with microscale models and a machine learning method (Tesis Maestría). Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey. Recuperado de: https://hdl.handle.net/11285/643363es_MX
dc.identifier.orcidhttps://orcid.org/0000-0001-5331-3949es_MX
dc.identifier.urihttps://hdl.handle.net/11285/643363
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relation.impreso2020-12-04
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ENERGÉTICAes_MX
dc.subject.keywordWind resource assessmentes_MX
dc.subject.keywordmicroscale modelses_MX
dc.subject.keywordmachine learninges_MX
dc.subject.keywordk-Nearest Neighbourses_MX
dc.subject.lcshSciencees_MX
dc.titleWind Resource Assessment with Microscale Models and a Machine Learning Methodes_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
QuirogaNovoa_TesisMaestriaPDFA.pdf
Size:
8.16 MB
Format:
Adobe Portable Document Format
Description:
Tesis de Maestría
Loading...
Thumbnail Image
Name:
QuirogaNovoa_ActadeGradoyDeclaraciondeAutoriaPDFA.pdf
Size:
392.77 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Carta de Autoria
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis.pdf
Size:
185.98 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia