Development of PLGA nanoparticles for siRNA delivery in cardiac cells

dc.contributor.advisorGarcía-Rivas, Gerardo
dc.contributor.advisorLozano García, Omar
dc.contributor.institutionCampus Monterreyen_US
dc.contributor.institutionCampus Monterreyen_US
dc.contributor.institutionCampus Monterreyen_US
dc.creatorLázaro-Alfaro, Anay Fernanda
dc.date.accessioned2019-03-15T21:42:53Z
dc.date.available2019-03-15T21:42:53Z
dc.date.created2018-12
dc.description.abstractNanomaterials have emerged as alternatives to solve problems found in diverse areas, from metallurgical industry to medicine. In medicine, nanomaterials are widely used as drug delivery systems due to their advantages over traditional delivery platforms. In gene therapy, viral vectors are commonly used. However, viral vectors are related to immune responses, presenting safety concerns and hindering therapy effectiveness. The use of nanomaterials in gene therapy may overcome these obstacles, enhancing gene therapeutic effects. Gene therapy can be divided in two main approaches: gene overexpression or gene silencing. In gene silencing, it is common to use RNA interference (RNAi) techniques. Due to pathophysiological pathways elution, RNAi is proposed as a potential therapy against diseases such as cancer, and cardiovascular diseases (CVDs). CVDs are the leading causes of death worldwide. Currently cardiovascular therapies are not always effective, and the progress of CVDs inevitably leads to death. Therefore, there is an increasing interest in the development of novel cardiovascular therapies. For instance, RNAi technology is widely studied as a potential therapy against CVDs. However, RNAi effectors are labile molecules and can be easily degraded; therefore, a suitable vehicle for their delivery is essential. In this work, we study the use of PLGA, a polymer approved by FDA and EMA in diverse nanomaterial formulations, in the development of siRNA delivery systems. Our results demonstrate that PLGA nanoparticles of <150 nm, negative surface charge and high siRNA encapsulation efficiency, can be formulated. Moreover, in cardiac cells siRNA-loaded PLGA nanoparticles decrease MCU expression by 35.1 ± 2.7 % compared to non-loaded PLGA nanoparticles.en_US
dc.description.degreeMaster of Science in Biotechnologyen_US
dc.description.tableofcontentsContents Abstract v List of Figures vi List of Tables vii List of equations i 1. Introduction 1 2. Theoretical Framework 4 2.1 Background 4 2.1.1 Applications of siRNA in cardiovascular models 4 2.1.2 PLGA nanoparticles as siRNA delivery systems 5 2.1.3 The role of calcium and MCU in cardiovascular diseases 6 2.2 Hypothesis 7 2.3 General Objective 7 2.4 Specific Objectives 7 3. Materials and Methods 8 3.1 Materials 8 3.2 Methods 8 3.2.1 Preparation of chitosan-siRNA complexes 8 3.2.2 Charge characterization of chitosan-siRNA complexes 8 3.2.3 Gel retardation assay 9 3.2.4 Preparation of siRNA-loaded PLGA nanoparticles 10 3.2.5 Experimental design 10 3.2.6 Size and surface charge characterization of nanoparticles 12 3.2.7 Quantification of siRNA entrapment efficiency in siRNA-loaded PLGA nanoparticles 12 3.2.8 Cell culture 13 3.2.9 Cellular metabolic activity assay 13 3.2.10 Cell transfection 14 3.2.11 Western Blot analysis 14 3.2.12 Statistical Analysis 15 4. Results and Discussions 16 4.1 Optimization of PLGA nanoparticles 16 4.2 Chitosan-siRNA complexes increase siRNA entrapment efficiency 22 4.3 PLGA nanoparticles do not decrease H9c2 cells metabolic activity 24 4.4 Chitosan/MCU-siRNA loaded PLGA nanoparticles modulate MCU expression 25 Conclusion 28 Perspectives 29 Appendix 30 Abbreviations 30 Bibliography 32 Contributions 36 Congress presentations 36en_US
dc.format.extent47en_US
dc.format.mediumTextoen_US
dc.identifier.citationLázaro-Alfaro, A. (2018). Development of PLGA nanoparticles for siRNA delivery in cardiac cells. Monterrey.en_US
dc.identifier.urihttp://hdl.handle.net/11285/632971
dc.language.isoengen_US
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyesp
dc.publisher.institutionInstituto Tecnológico y de Estudios Superiores de Monterreyen_US
dc.relation.ispartofN/Aen_US
dc.rightsOpen Accessen_US
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Estados Unidos de América*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject3 MEDICINA Y CIENCIAS DE LA SALUDen_US
dc.subject.disciplineIngeniería y Ciencias Aplicadas / Engineering & Applied Sciencesen_US
dc.subject.keywordnanoparticlesen_US
dc.subject.keywordsiRNAen_US
dc.subject.keywordcardiac cellsen_US
dc.titleDevelopment of PLGA nanoparticles for siRNA delivery in cardiac cellsen_US
dc.typeTesis de maestría
refterms.dateFOA2019-03-15T21:42:53Z

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Thesis_Anay_Lazaro.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Description:
Tesis de Maestría
Loading...
Thumbnail Image
Name:
carta_autorizacion.pdf
Size:
784.76 KB
Format:
Adobe Portable Document Format
Description:
Carta de autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia