Deep learning framework to predict and generate new fluorescent molecules from experimental data
| dc.audience.educationlevel | Investigadores/Researchers | |
| dc.audience.educationlevel | Estudiantes/Students | |
| dc.audience.educationlevel | Maestros/Teachers | |
| dc.audience.educationlevel | Otros/Other | |
| dc.contributor.advisor | Aguirre Soto, Héctor Alán | |
| dc.contributor.author | Azizi, Mina | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Ray, Mallar | |
| dc.contributor.committeemember | Bernal Neira, David Esteban | |
| dc.contributor.committeemember | Mendoza Cortés, José Luis | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.contributor.mentor | Flores Tlacuahuac, Antonio | |
| dc.date.accepted | 2025-07 | |
| dc.date.accessioned | 2025-09-06T13:10:10Z | |
| dc.date.issued | 2025-07 | |
| dc.description | https://orcid.org/0000-0003-0455-5401 | |
| dc.description.abstract | Fluorescent molecules play important roles in biological imaging, diagnostics, and materials science. However, identifying efficient and effective fluorophores remains challenging, as traditional trial-and-error experimentation and in silico computations are both costly and time-consuming. To address this, this thesis presents a deep learn- ing approach to streamline the discovery process by predicting optical properties and generating novel fluorescent molecules directly from experimental data. The study is based on FluoDB, a publicly available dataset collected from the literature, containing over 55,000 fluorophore–solvent pairs with experimentally measured optical prop- erties. Graph Convolutional Network (GCN) models were trained to predict four key optical properties and effec- tively captured complex structure–property relationships, achieving R² values ranging from 0.49 to 0.87 across the different targets. A Conditional Variational Autoencoder (CVAE) was also implemented to generate novel fluores- cent molecules based on solvent identity and target absorption range. In total, 2573 valid and structurally diverse molecules were generated, with a variety of predicted optical behaviors. Together, the predictive model and genera- tive models provide a useful and data-driven approach to accelerate exploration and design of functional fluorescent materials. | |
| dc.description.degree | Master in Nanotechnology | |
| dc.format.medium | Texto | |
| dc.identificator | 221022||120304 | |
| dc.identifier.citation | Azizi, M. (2025). Deep learning framework to predict and generate new fluorescent molecules from experimental data [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/704046 | |
| dc.identifier.uri | https://hdl.handle.net/11285/704046 | |
| dc.language.iso | eng | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | restrictedAccess | |
| dc.rights.uri | https://creativecommons.org/licenses/by-sa/4.0 | |
| dc.subject.classification | BIOLOGÍA Y QUÍMICA::QUÍMICA::QUÍMICA FÍSICA::FOTOQUÍMICA | |
| dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL | |
| dc.subject.keyword | Deep learning | |
| dc.subject.keyword | Graph neural networks | |
| dc.subject.keyword | Variational autoencoders | |
| dc.subject.keyword | Fluorescent molecules | |
| dc.subject.keyword | Optical properties | |
| dc.subject.keyword | Fluorescence | |
| dc.subject.keyword | Machine learning | |
| dc.subject.keyword | Molecular design | |
| dc.subject.lcsh | Technology | |
| dc.title | Deep learning framework to predict and generate new fluorescent molecules from experimental data | |
| dc.type | Tesis de maestría |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- Azizi_TesisMaestria_pdf.pdf
- Size:
- 4.06 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- Azizi_ActaGradoDeclaracionAutoria_pdfa.pdf
- Size:
- 464.13 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- Azizi_CartaAutorizacion_pdf.pdf
- Size:
- 154.85 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

