Deep learning framework to predict and generate new fluorescent molecules from experimental data

dc.audience.educationlevelInvestigadores/Researchers
dc.audience.educationlevelEstudiantes/Students
dc.audience.educationlevelMaestros/Teachers
dc.audience.educationlevelOtros/Other
dc.contributor.advisorAguirre Soto, Héctor Alán
dc.contributor.authorAzizi, Mina
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberRay, Mallar
dc.contributor.committeememberBernal Neira, David Esteban
dc.contributor.committeememberMendoza Cortés, José Luis
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorFlores Tlacuahuac, Antonio
dc.date.accepted2025-07
dc.date.accessioned2025-09-06T13:10:10Z
dc.date.issued2025-07
dc.descriptionhttps://orcid.org/0000-0003-0455-5401
dc.description.abstractFluorescent molecules play important roles in biological imaging, diagnostics, and materials science. However, identifying efficient and effective fluorophores remains challenging, as traditional trial-and-error experimentation and in silico computations are both costly and time-consuming. To address this, this thesis presents a deep learn- ing approach to streamline the discovery process by predicting optical properties and generating novel fluorescent molecules directly from experimental data. The study is based on FluoDB, a publicly available dataset collected from the literature, containing over 55,000 fluorophore–solvent pairs with experimentally measured optical prop- erties. Graph Convolutional Network (GCN) models were trained to predict four key optical properties and effec- tively captured complex structure–property relationships, achieving R² values ranging from 0.49 to 0.87 across the different targets. A Conditional Variational Autoencoder (CVAE) was also implemented to generate novel fluores- cent molecules based on solvent identity and target absorption range. In total, 2573 valid and structurally diverse molecules were generated, with a variety of predicted optical behaviors. Together, the predictive model and genera- tive models provide a useful and data-driven approach to accelerate exploration and design of functional fluorescent materials.
dc.description.degreeMaster in Nanotechnology
dc.format.mediumTexto
dc.identificator221022||120304
dc.identifier.citationAzizi, M. (2025). Deep learning framework to predict and generate new fluorescent molecules from experimental data [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/704046
dc.identifier.urihttps://hdl.handle.net/11285/704046
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.rightsrestrictedAccess
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0
dc.subject.classificationBIOLOGÍA Y QUÍMICA::QUÍMICA::QUÍMICA FÍSICA::FOTOQUÍMICA
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordDeep learning
dc.subject.keywordGraph neural networks
dc.subject.keywordVariational autoencoders
dc.subject.keywordFluorescent molecules
dc.subject.keywordOptical properties
dc.subject.keywordFluorescence
dc.subject.keywordMachine learning
dc.subject.keywordMolecular design
dc.subject.lcshTechnology
dc.titleDeep learning framework to predict and generate new fluorescent molecules from experimental data
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Azizi_TesisMaestria_pdf.pdf
Size:
4.06 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
Azizi_ActaGradoDeclaracionAutoria_pdfa.pdf
Size:
464.13 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
Azizi_CartaAutorizacion_pdf.pdf
Size:
154.85 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia