Sign language recognition with tree structure skeleton images and densely connected convolutional neural networks

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorGonzález Mendoza, Miguel
dc.contributor.authorLaines Vázquez, David Alberto
dc.contributor.catalogerpuemcuervoes_MX
dc.contributor.committeememberSánchez Ante, Gildardo
dc.contributor.committeememberCantoral Ceballos, José Antonio
dc.contributor.committeememberMéndez Vázquez, Andrés
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorOchoa Ruiz, Gilberto
dc.date.accepted2023-05-24
dc.date.accessioned2025-03-19T23:56:11Z
dc.date.embargoenddate2024-05-24
dc.date.issued2023-05
dc.description.abstractThis thesis presents a novel approach to Isolated Sign Language Recognition (ISLR) using skeleton modality data and deep learning. The study proposes a method that employs an image-based spatio-temporal skeleton representation for sign gestures and a convolu tional neural network (CNN) for classification. The advantages of the skeleton modality over RGB, such as reduced noise and smaller parameter requirements for processing, are taken into account. The aim is to achieve competitive performance with a low number of parameters compared to the existing state-of-the-art in ISLR. Informed by the literature on skeleton-based human action recognition (HAR), this research adapts the Tree Structure Skeleton Image (TSSI) method to represent a sign gesture as an image. The process in volves first extracting the skeleton sequences from sign videos using the MediaPipe frame work, which offers fast inference performance across multiple devices. The TSSI represen tation is then processed using a DenseNet, chosen for its efficiency and fewer parameters. The proposed method, called SL-TSSI-DenseNet, is trained and evaluated on two chal lenging datasets: the Word level American Sign Language (WLASL) dataset and the Ankara University Turkish Sign Language (AUTSL) dataset. Specifically, the WLASL-100 subset of the WLASL dataset and the RGB Track of the AUTSL dataset are selected for the experi ments. The results demonstrate that SL-TSSI-DenseNet outperforms other skeleton-based and RGB-based models benchmarked on the WLASL-100 dataset, achieving an accuracy of 81.47% through the use of data augmentation and pre-training. On the AUTSL dataset, it achieves competitive performance with an accuracy of 93.13% without pre-training and data augmentation. Additionally, an augmentation ablation study is conducted to iden tify the most effective data augmentation technique for the model’s performance on the WLASL-100 dataset. Furthermore, it provides insights into the effectiveness of various data augmentation techniques.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationLaines Vázquez, D. A. (2023). Sign language recognition with tree structure skeleton images and densely connected convolutional neural networks, [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703370
dc.identifier.orcidhttps://orcid.org/0009-0002-7903-1872es_MX
dc.identifier.urihttps://hdl.handle.net/11285/703370
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationConacytes_MX
dc.relation.isFormatOfpublishedVersiones_MX
dc.rightsopenAccesses_MX
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordSign language recognitiones_MX
dc.subject.keywordComputer visiones_MX
dc.subject.keywordDeep learninges_MX
dc.subject.lcshSciencees_MX
dc.titleSign language recognition with tree structure skeleton images and densely connected convolutional neural networkses_MX
dc.typeTesis de Maestría / master Thesises_MX

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
LainesVazquez_CartaAutorizacion.pdf
Size:
111.58 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización
Loading...
Thumbnail Image
Name:
LainesVazquez_Tesis.pdf
Size:
7.66 MB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
LainesVazquez_Firmas carta autorizacion, acta de grado.pdf
Size:
170.64 KB
Format:
Adobe Portable Document Format
Description:
Firmas carta autorizacion, acta de grado

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia