Jones Matrix Characterization of Homogeneous Optical Elements via Evolutionary Algorithms

dc.audience.educationlevelEstudiantes/Studentses_MX
dc.contributor.advisorCovantes Osuna, Edgar
dc.contributor.authorDe Luna Pámanes, Alejandra
dc.contributor.catalogertolmquevedo/mscuervoes_MX
dc.contributor.committeememberAmaya Contreras, Iván Mauricio
dc.contributor.committeememberOrtiz Bayliss, José Carlos
dc.contributor.committeememberSerrano García, David Ignacio
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.contributor.mentorLópez Mago, Dorilián
dc.creatorCOVANTES OSUNA, EDGAR; 352304
dc.date.accepted2021-06-15
dc.date.accessioned2023-05-23T15:27:53Z
dc.date.available2023-05-23T15:27:53Z
dc.date.created2021-06
dc.date.issued2021-06-15
dc.descriptionhttps://orcid.org/0000-0001-5991-6927es_MX
dc.description.abstractJones calculus provides a robust and straightforward method to describe polarized light and polarizing optical systems using two-element vectors (Jones vectors) and 2 X 2 matrices (Jones matrices). Jones matrices are used to determine the retardance and diattenuation introduced by an optical element or a sequence of elements. Moreover, they are the tool of choice to study optical geometric phases, the polarization-dependent phase of the total delay of a light beam acquired when passing through a material. Jones matrix characterization is a technique used to characterize polarizing optical systems. By measuring the geometric phase, Jones matrix characterization can identify the sample's eigenpolarizations, which are those polarization states that exits the sample only scaled by a phase factor. Currently, there is only one existing Jones matrix characterization method available. However, said method is inefficient, since the characterization of any given element is time-consuming given that the method is based on a general sampling strategy. Optimization techniques are used to find a solution to a problem specified by an objective function, where the variables are searched over to find the combination that results in the best objective function value while satisfying the constraints of the problem. Evolutionary Algorithms (EAs) are optimization techniques based on the theory of evolution, which explains the adaptive changes of species in nature through the survival of the fittest, heredity, and mutation. They are all random-based meta-heuristic algorithms that do not require gradient information and typically make use of several points in the search space at a time. Therefore, using the exploration capabilities of EAs, in this study, we present an initial approach for solving the problem of finding the eigenvectors that characterize the Jones matrix of a homogeneous optical element through EAs. We evaluate the analytical performance of an EA with a polynomial mutation (PM) operator and a Genetic Algorithm (GA) with a simulated binary crossover operator and a PM operator, and compare the results with those obtained through a general sampling method. The results show that both the EA and the GA out-performed a general sampling method of 6,000 measurements, by requiring in average 103 and 188 fitness functions measurements respectively, while having a perfect rate of convergence. The present analysis shows that the usage of EAs in the area of optics is a promising research area and as future research, we would like to apply EAs on the more complex case of inhomogeneous optical elements, for which no method of characterization currently exists.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator1||22||2209||220919es_MX
dc.identifier.citationDe Luna Pámanes, A. (2021). Jones Matrix Characterization of Homogeneous Optical Elements via Evolutionary Algorithms [Unpublished master's thesis]. Instituto Tecnológico y de Estudios Superiores de Monterrey.es_MX
dc.identifier.cvu1007204es_MX
dc.identifier.orcidhttps://orcid.org/0000-0002-7419-6099es_MX
dc.identifier.urihttps://hdl.handle.net/11285/650707
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationConsejo Nacional de Ciencia y Tecnologíaes_MX
dc.relation.isFormatOfdraftes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::FÍSICA::ÓPTICA::OPTICA FÍSICAes_MX
dc.subject.keywordJones matriceses_MX
dc.subject.keywordGeometric phasees_MX
dc.subject.keywordEvolutionary Algorithmses_MX
dc.subject.keywordGenetic Algorithmses_MX
dc.subject.lcshSciencees_MX
dc.subject.lcshTechnologyes_MX
dc.titleJones Matrix Characterization of Homogeneous Optical Elements via Evolutionary Algorithmses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Name:
Tesis Alejandra De Luna Pamares final.pdf
Size:
51.21 MB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON.pdf
Size:
55.98 KB
Format:
Adobe Portable Document Format
Description:
Carta con Autorizaciones
Loading...
Thumbnail Image
Name:
Firmas-Alejandra-De-Luna_15jun21.pdf
Size:
505.17 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas
Loading...
Thumbnail Image
Name:
Autoria Alejandra De Luna Pamares.pdf
Size:
31.34 KB
Format:
Adobe Portable Document Format
Description:
Loading...
Thumbnail Image
Name:
Firmas Alejandra De Luna Pamares.pdf
Size:
525.36 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia