Enhancing BGP security with MAD anomaly detection system and machine learning techniques
| dc.audience.educationlevel | Empresas/Companies | |
| dc.contributor.advisor | Cantoral Ceballos, José Antonio | |
| dc.contributor.author | Romo Chavero, María Andrea | |
| dc.contributor.cataloger | emipsanchez | |
| dc.contributor.committeemember | Botero Vega, Juan Felipe | |
| dc.contributor.committeemember | Navarro Barrón, Francisco Javier | |
| dc.contributor.department | School of Engineering and Sciences | |
| dc.contributor.institution | Campus Monterrey | |
| dc.contributor.mentor | Pérez Díaz, Jesús Arturo | |
| dc.date.accepted | 2024-10-31 | |
| dc.date.accessioned | 2024-12-30T21:29:46Z | |
| dc.date.embargoenddate | 2025-12-31 | |
| dc.date.issued | 2024-12 | |
| dc.description | https://orcid.org/0000-0001-5597-939X | |
| dc.description.abstract | Anomalies in the Border Gateway Protocol (BGP) represent a signicant vulnerability in the Internet’s infrastructure, as they can cause widespread disruptions, trafc misdirection, and even security breaches. Proactive detection of these anomalies is vital to preserving network stability and preventing potential cyberattacks. In response to this challenge, we present the Median Absolute Deviation (MAD) anomaly detection system, which combines traditional statistical methods with advanced machine learning (ML) techniques for more precise and dynamic detection. Our approach introduces a novel adaptive threshold mechanism, allowing the system to adjust based on the changing conditions of network trafc. This dynamic thresholding signif- icantly improves the accuracy, precision, and F1-score of anomaly detection compared to the previous xed-threshold version. Additionally, we integrate the MAD system with a diverse ML classiers, including Random Forest, XGBoost, LightGBM, CatBoost, and ExtraTrees to enhance the system’s ability to identify complex patterns that indicate unusual BGP behavior.We evaluate our detection system on well-documented BGP anomaly events, such as the Slammer worm, Nimda, Code Red 1 v2, the Moscow blackout, and the Telekom Malaysia misconguration. The results show that our system when combined with ML models achieves an overall accuracy and F1-score of 0.99, demonstrating its effectiveness across various anomaly types. By using both statistical and ML models, the system is able to capture irregularities that could signal security threats, offering a more comprehensive detection solution.This research highlights the importance of combining statistical anomaly detection with ML to obtain a balance between accuracy and computational efciency. The system’s low resource requirements and minimal pre-processing make it highly scalable, allowing it to be potentially deployed in real-time on large-scale networks. | |
| dc.description.degree | Master of Science in Computer Science | |
| dc.format.medium | Texto | |
| dc.identificator | |330417 | |
| dc.identifier.citation | Romo Chavero, M. A. (2024). Enhancing BGP security with MAD anomaly detection system and machine learning techniques. [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. | |
| dc.identifier.cvu | 1276195 | |
| dc.identifier.orcid | https://orcid.org/0009-0002-5224-1343 | |
| dc.identifier.uri | https://hdl.handle.net/11285/702954 | |
| dc.identifier.uri | https://doi.org/10.60473/ritec.30 | |
| dc.language.iso | eng | |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | |
| dc.relation.isFormatOf | acceptedVersion | |
| dc.rights | openAccess | |
| dc.rights.embargoreason | Existe una publicación en revisión. | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REAL | |
| dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::SISTEMAS EN TIEMPO REAL | |
| dc.subject.keyword | Border Gateway Protocol | |
| dc.subject.keyword | Median Absolute Deviation (MAD) | |
| dc.subject.keyword | Anomaly Detection | |
| dc.subject.keyword | BGP Security | |
| dc.subject.keyword | Machine Learning | |
| dc.subject.keyword | Dynamic Thresholding | |
| dc.subject.keyword | Network Stability | |
| dc.subject.keyword | Routing Protocols | |
| dc.subject.keyword | Cybersecurity | |
| dc.subject.keyword | Traffic Analysis | |
| dc.subject.lcsh | Technology | |
| dc.title | Enhancing BGP security with MAD anomaly detection system and machine learning techniques | |
| dc.type | Tesis de Maestría / master Thesis |
Files
Original bundle
1 - 3 of 3
Loading...
- Name:
- RomoChavero_TesisMaestriapdfa.pdf
- Size:
- 3.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- RomoChavero_ActaGradoDeclaracionAutoriapdfa.pdf
- Size:
- 315.19 KB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- RomoChavero_CartaAutorización.pdf
- Size:
- 159.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.28 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

