Artifact elimination from EEG signals using parametric modeling restoration and independent component analysis

dc.contributor.advisorBouchereau Lara, Frantz
dc.contributor.authorPeraza Rodríguez, Luis Ramón
dc.contributor.committeememberArcos Camargo, Demetrio
dc.contributor.committeememberMartinez Chapa, Sergio Omar
dc.contributor.departmentITESM-Campus Monterreyen
dc.contributor.mentorDieck Assad, Graciano
dc.creatorPeraza Rodriguez, Luis; 179355
dc.date.accessioned2015-08-17T09:43:29Zen
dc.date.available2015-08-17T09:43:29Zen
dc.date.issued2007-05-01
dc.description.abstractThis thesis faces the problem of eliminating time-constrained artifacts from electroencephalographic (EEG) signals. Four signal restoration techniques are analyzed, autoregressive interpolation (ARI), linear prediction interpolation (LPI), warped linear prediction interpolation (WLPI), and a novel technique proposed in this thesis, Fourier linear combiner interpolation (FLCI). The signal restoration techniques are based on widely accepted models for EEG signals. First, these techniques are used to remove time-constrained artifacts from a single EEG channel when few electrodes are available, as occurs in neonatal EEG and polysomnography. Here, we prove the preserving of the spectral information within the restored segment. Further, when having more available electrodes and knowing that a time-constrained artifact contaminates several channels, we propose to restore the artifactual independent component (IC) instead of zeroing it out, which is a common practice. It is proved that in the bands of interest the spectral information is enhanced by reducing the mean squared error along the frequency components.
dc.identificator7
dc.identificator33
dc.identificator3307
dc.identifier.urihttp://hdl.handle.net/11285/567714en
dc.languageeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInvestigadoreses_MX
dc.relationEstudianteses_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0*
dc.subject.classification7 INGENIERÍA Y TECNOLOGÍAes_MX
dc.subject.classificationArea::INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA ELECTRÓNICA
dc.titleArtifact elimination from EEG signals using parametric modeling restoration and independent component analysis
dc.typeTesis de maestría
refterms.dateFOA2018-03-19T13:25:04Z
refterms.dateFOA2018-03-19T13:25:04Z

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
DocsTec_5256.pdf
Size:
8.76 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
DocsTec_5256_1.pdf
Size:
78.63 KB
Format:
Adobe Portable Document Format
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia