Maturity recognition and fruit counting for sweet peppers in greenhouses using deep Learning neural networks
| dc.audience.educationlevel | Público en general/General public | es_MX |
| dc.contributor.advisor | Gómez Espinosa, Alfonso | |
| dc.contributor.author | Viveros Escamilla, Luis David | |
| dc.contributor.cataloger | mtyahinojosa, emipsanchez | |
| dc.contributor.committeemember | Cantoral Ceballos, José Antonio | |
| dc.contributor.department | Escuela de Ingenieria y Ciencias | es_MX |
| dc.contributor.institution | Campus Querétaro | es_MX |
| dc.contributor.mentor | Escobedo Cabello, Jesús Arturo | |
| dc.date.accepted | 2024-05-10 | |
| dc.date.accessioned | 2025-10-11T04:45:54Z | |
| dc.date.issued | 2024-01-05 | |
| dc.description | https://orcid.org/0000-0001-5657-380X | es_MX |
| dc.description.abstract | This study presents an approach to address the challenges involved in recognizing the maturity stage and counting sweet peppers of varying colors (green, yellow, orange, and red) within greenhouse environments. The methodology leverages the YOLOv5 model for real-time object detection, classification, and localization, coupled with the DeepSORT algorithm for efficient tracking. The system was successfully implemented to monitor sweet pepper production, and some challenges related to this environment, namely occlusions and the presence of leaves and branches, were effectively overcome. The algorithm was evaluated using real-world data collected in a sweet pepper greenhouse. A dataset comprising 1863 images was meticulously compiled to enhance the study, incorporating diverse sweet pepper vari eties and maturity levels. Additionally, the study emphasized the role of confidence levels in object recognition, achieving a confidence level of 0.973. Furthermore, the DeepSORT algo rithm was successfully applied for counting sweet peppers, demonstrating an accuracy level of 85.7% in two simulated environments under challenging conditions, such as varied lighting and inaccuracies in maturity level assessment. | es_MX |
| dc.description.degree | Maestro en Ciencias de la Ingeniería | es_MX |
| dc.format.medium | Texto | es_MX |
| dc.identificator | 120304||120305||310701||120319||120302 | |
| dc.identifier.citation | Viveros Escamilla, L. D. (2024). Maturity recognition and fruit counting for sweet peppers in greenhouses using deep Learning neural networks [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/704273 | es_MX |
| dc.identifier.cvu | 1239363 | es_MX |
| dc.identifier.orcid | https://orcid.org/0009-0006-7161-4562 | es_MX |
| dc.identifier.uri | https://hdl.handle.net/11285/704273 | |
| dc.language.iso | eng | es_MX |
| dc.publisher | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_MX |
| dc.relation.isFormatOf | acceptedVersion | es_MX |
| dc.rights | openAccess | es_MX |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | es_MX |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL | |
| dc.subject.classification | INGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS AUTOMATIZADOS DE PRODUCCIÓN | |
| dc.subject.classification | CIENCIAS AGROPECUARIAS Y BIOTECNOLOGÍA::CIENCIAS AGRARIAS::HORTICULTURA::PRODUCCIÓN DE CULTIVOS | |
| dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::CONTROL DE INVENTARIOS | |
| dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA::MATEMÁTICAS::CIENCIA DE LOS ORDENADORES::LENGUAJES ALGORÍTMICOS | |
| dc.subject.keyword | Yield estimation | |
| dc.subject.keyword | Sweet peppers | |
| dc.subject.keyword | Precision agriculture | |
| dc.subject.keyword | Computer vision | |
| dc.subject.keyword | Deep learning | |
| dc.subject.keyword | Maturity detection | |
| dc.subject.lcsh | Science | |
| dc.subject.lcsh | Technology | |
| dc.subject.lcsh | Agriculture | |
| dc.title | Maturity recognition and fruit counting for sweet peppers in greenhouses using deep Learning neural networks | |
| dc.type | Tesis de Maestría / master Thesis | es_MX |
Files
Original bundle
1 - 4 of 4
Loading...
- Name:
- ViverosEscamilla_TesisMaestría.pdf
- Size:
- 11.37 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Maestría
Loading...
- Name:
- ViverosEscamillaLuisDavid_TesisOriginal
- Size:
- 12.6 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tesis Original
Loading...
- Name:
- ViverosEscamilla_ActaGradoDeclaracionAutoria_pdf
- Size:
- 1.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- Acta de Grado y Declaración de Autoría
Loading...
- Name:
- ViverosEscamilla_Cartade Autorización.pdf
- Size:
- 529.82 KB
- Format:
- Adobe Portable Document Format
- Description:
- Carta de Autorización
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.3 KB
- Format:
- Item-specific license agreed upon to submission
- Description:

