A computer-based method to estimate the level of sensitivity of typical somatosensorial responses

dc.audience.educationlevelInvestigadores/Researchers
dc.contributor.advisorAlonso Valerdi, Luz Maria
dc.contributor.authorCepeda Zapata, Luis Kevin
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberAngulo Sherman, Irma Nayeli
dc.contributor.committeememberMuñoz Ubando, Luis Alberto
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionCampus Monterrey
dc.contributor.mentorIbarra Zaratre, David Isaac
dc.date.accepted2024-11-22
dc.date.accessioned2025-01-14T23:49:55Z
dc.date.issued2024-11
dc.descriptionhttps://orcid.org/0000-0002-2256-2958
dc.description.abstractUnderstanding somatosensory responses is fundamental to human interaction with the environment, yet quantitative tools for assessing typical tactile responses remain underdeveloped. This thesis introduces a novel computer-based method to evaluate somatosensory processing through electroencephalographic data, focusing on responses to different tactile stimuli. The project will be conducted in three stages: 1) registration of typical somatosensory evoked responses due to touch, air, and vibration in incremental intensities using electroencephalography, 2) validation of the prototypes to evoke tactile evoked potentials, 3) development and evaluation of a classification model to differentiate tactile stimuli and intensities. The study involved the creation of a database of Electroencephalographic recordings from 34 healthy adult volunteers exposed to air, vibration, and caress stimuli, under four diffrent intensity levels intensity levels. The neural responses were analyzed using Discrete Wavelet Transform and classified with machine learning models including K-Nearest Neighbors, Random Forest, and Multilayer Perceptron. For a generalized classification model, an accuracy of 72.6% was achieved for distinguishing stimulus type, 39.3% accuracy for intensity classification and 33.4% for both stimulus type and intensity. Individual classifiers for each subject had an increase in accuracy of 6-10%. Additionally, a deep learning model, EEGNet, was implemented, yielding similar results for stimulus type but lower performance for intensity. Analysis revealed significant inter-subject variability, with subject-specific models outperforming generalized ones, highlighting the need for individualized approaches in somatosensory assessments. This study offers a novel dataset and model framework, which enhances the understanding of neural tactile processing to advance sensory-based interfaces and diagnostic tools in neurophysiological research.
dc.description.degreeMaster of Science in Computer Sciences
dc.format.mediumTexto
dc.identificator120320
dc.identifier.citationCepeda Zapata, L. K. (2024). A computer-based method to estimate the level of sensitivity of typical somatosensorial responses [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703038
dc.identifier.cvu1276701
dc.identifier.orcidhttps://orcid.org/0009-0009-4527-6194
dc.identifier.urihttps://hdl.handle.net/11285/703038
dc.identifier.urihttps://doi.org/10.60473/ritec.114
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relation.isFormatOfacceptedVersion
dc.relation.urlCepeda Zapata, L. K.A. (2024). computer-based method to estimate the level of sensitivity of typical somatosensorial responses [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey.
dc.rightsopenAccess
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::SISTEMAS DE CONTROL MÉDICO
dc.subject.keywordElectroencephalography (EEG)
dc.subject.keywordTactile Processing
dc.subject.keywordSomatosensory Evoked Potentials (SERPs)
dc.subject.keywordDiscrete Wavelet Transform (DWT)
dc.subject.keywordEEG Signal Analysis
dc.subject.keywordDeep Learning in EEG
dc.subject.keywordNeuroSense Stimulator
dc.subject.lcshTechnology
dc.subject.lcshMedicine
dc.titleA computer-based method to estimate the level of sensitivity of typical somatosensorial responses
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
CepedaZapata_TesisMaestríapdfa.pdf
Size:
13.24 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
CepedaZapata_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
285.67 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
CepedaZapata_CartaAutorizacionpdf.pdf
Size:
127.07 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia