Mining the SCOPUS database to identify potential academic rising stars

dc.audience.educationlevelInvestigadores/Researcherses_MX
dc.contributor.advisorCeballos Cancino, Héctor Gibrán
dc.contributor.authorAyala Urbina, Jorge Antonio
dc.contributor.catalogeremipsanchezes_MX
dc.contributor.committeememberHernández Gress, Neil
dc.contributor.committeememberCantú Ortiz, Francisco Javier
dc.contributor.committeememberGarcía Vázquez, Juan Pablo
dc.contributor.departmentSchool of Engineering and Scienceses_MX
dc.contributor.institutionCampus Monterreyes_MX
dc.creatorCeballos Cancino, Héctor Gibrán; 223871
dc.date.accepted2021-05-18
dc.date.accessioned2022-08-23T14:52:07Z
dc.date.available2022-08-23T14:52:07Z
dc.date.created2021
dc.date.issued2021-06-01
dc.descriptionhttps://orcid.org /0000-0002-2460-3442es_MX
dc.description.abstractAcademic Rising Stars are often defined as authors in the earlier years of their scientific careers who have the potential to become impactful authors in the future. Universities and research institutions would benefit greatly from identifying these Academic Rising Stars and convince them to join their research teams, because if the potential of these authors is fulfilled these could benefit the institution in terms of scientific prestige and impactful scientific production. This thesis project aims to prove if it is possible to identify these Academic Rising Stars using Machine Learning classifiers and the data that is available through Elsevier’s Scopus and SciVal APIs. Conducting a case study in the field of Clustering, it was shown that it is possible to identify these authors using the average metrics from their first five years of scientific publications, with acceptable precision and accuracy. It was shown that the best attribute to label top authors is the h5-index and the classifier which can achieve the best result is the Support Vector Machine with a radial basis function kernel. The developed methodology provides a solid framework from which research institutions can identify Academic Rising Stars in the fields they are interested in.es_MX
dc.description.degreeMaster of Science in Computer Sciencees_MX
dc.format.mediumTextoes_MX
dc.identificator7||33||3304||120304es_MX
dc.identifier.citationAyala Urbina, J. A. (2021). Mining the SCOPUS database to identify potential academic rising stars (Tesis de Maestría / master Thesis) Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Monterrey, Monterrey, Nuevo Leon. Recuperado de: https://hdl.handle.net/11285/648769es_MX
dc.identifier.cvu1007053es_MX
dc.identifier.orcidhttps://orcid.org /0000-0002-9773-5876es_MX
dc.identifier.scopusid57217014558es_MX
dc.identifier.urihttps://hdl.handle.net/11285/648769
dc.language.isoenges_MX
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyes_MX
dc.relationTecnológico de Monterreyes_MX
dc.relationCONACYTes_MX
dc.relation.isFormatOfversión publicadaes_MX
dc.relation.isreferencedbyREPOSITORIO NACIONAL CONACYT
dc.rightsopenAccesses_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIALes_MX
dc.subject.keywordAcademic Rising Starses_MX
dc.subject.keywordScientometricses_MX
dc.subject.keywordMachine Learninges_MX
dc.subject.keywordSupervised Classificationes_MX
dc.subject.lcshTechnologyes_MX
dc.titleMining the SCOPUS database to identify potential academic rising starses_MX
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
Proyecto_Tesis_MCCi_20210601.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Tesis
Loading...
Thumbnail Image
Name:
Hoja de Firmas_Tesis_JorgeAyala_HC_JP_23jun21.pdf
Size:
341.24 KB
Format:
Adobe Portable Document Format
Description:
Hoja de firmas del comité académico
Loading...
Thumbnail Image
Name:
CartaAutorizacionTesis-CON(1).pdf
Size:
119.2 KB
Format:
Adobe Portable Document Format
Description:
Carta de Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.3 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2025

Licencia