Explainable AI for trading 50 consumer discretionary stocks in the S&P 500

dc.audience.educationlevelEmpresas/Companies
dc.contributor.advisorMendoza Montoya Omar
dc.contributor.authorSanromán Iñiguez, Paulina Monserrat
dc.contributor.catalogeremipsanchez
dc.contributor.committeememberAntelis Ortiz, Javier Mauricio
dc.contributor.committeememberGuizar Mateos, Isaí
dc.contributor.departmentSchool of Engineering and Sciences
dc.contributor.institutionSede EGADE Monterrey
dc.contributor.mentorBernal Ponce, Luis Arturo
dc.date.accepted2024-12-02
dc.date.accessioned2025-01-13T16:57:54Z
dc.date.issued2024-12
dc.descriptionttps://orcid.org/0000-0002-4355-886X
dc.description.abstractThis document presents a study that merges computer science techniques with finance, focusing on the development of an Explainable Supervised Machine Learning (SML) model aimed at achieving a balance between predictive accuracy and interpretability in price forecasting for Algorithmic Trading (AT). Utilizing SHAP (SHapley Additive exPlanations), both global explanations are provided to facilitate feature selection and determine the importance of various macroeconomic and technical indicators derived from historical data of 50 companies within the Consumer Discretionary sector of the S&P 500 Index. The study also employs hyperparameter tuning on lagged values to assess whether the price movements from one day can effectively predict subsequent market prices. Algorithmic Trading (AT) currently constitutes approximately 60% to 75% of total trading activity in U.S. equity markets, European financial markets, and major Asian capital markets (Groette, 2024). Projections indicate a significant growth trajectory for this sector. The driving force behind this expansion is the advancement of Artificial Intelligence (AI). As AI models incorporate more data, they tend to become increasingly intricate and opaque, evolving into what are commonly referred to as black box models. This complexity raises critical concerns surrounding explainability, interpretability, and transparency, as well as adherence to regulatory standards. Neglecting these issues can lead to severe market disruptions, including panic selling, liquidity evaporation, increased asset correlations, and a lack of clarity regarding the decision-making processes of AI models. Such challenges underscore the imperative for developing transparent and interpretable AI solutions in AT to mitigate risks and enhance market stability.
dc.description.degreeMaster of Science in Computer Science
dc.format.mediumTexto
dc.identificator120304
dc.identifier.citationSanromán Iñiguez, P. M. (2024).Explainable AI for trading 50 consumer discretionary stocks in the S&P 500 [Tesis maestría]. Instituto Tecnológico y de Estudios Superiores de Monterrey. Recuperado de: https://hdl.handle.net/11285/703018
dc.identifier.urihttps://hdl.handle.net/11285/703018
dc.identifier.urihttps://doi.org/10.60473/ritec.94
dc.language.isoeng
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationInstituto Tecnológico y de Estudios Superiores de Monterrey
dc.relationCONAHCYT
dc.relation.isFormatOfacceptedVersion
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA::CIENCIAS TECNOLÓGICAS::TECNOLOGÍA DE LOS ORDENADORES::INTELIGENCIA ARTIFICIAL
dc.subject.keywordxAI
dc.subject.keywordStock price prediction
dc.subject.keywordMachine learning
dc.subject.keywordAlgorithmic trading
dc.subject.keywordS&P500
dc.subject.keywordExplainable AI
dc.subject.lcshTechnology
dc.titleExplainable AI for trading 50 consumer discretionary stocks in the S&P 500
dc.typeTesis de maestría

Files

Original bundle

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Name:
SanromanIniguez_TesisMaestriapdfa.pdf
Size:
9.46 MB
Format:
Adobe Portable Document Format
Description:
Tesis Maestría
Loading...
Thumbnail Image
Name:
SanromanIniguez_ActaGradoDeclaracionAutoriapdfa.pdf
Size:
471.76 KB
Format:
Adobe Portable Document Format
Description:
Acta de Grado y Declaración de Autoría
Loading...
Thumbnail Image
Name:
SanromanIniguez_CartaAutorizaionpdf.pdf
Size:
220.53 KB
Format:
Adobe Portable Document Format
Description:
Carta Autorización

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.28 KB
Format:
Item-specific license agreed upon to submission
Description:
logo

El usuario tiene la obligación de utilizar los servicios y contenidos proporcionados por la Universidad, en particular, los impresos y recursos electrónicos, de conformidad con la legislación vigente y los principios de buena fe y en general usos aceptados, sin contravenir con su realización el orden público, especialmente, en el caso en que, para el adecuado desempeño de su actividad, necesita reproducir, distribuir, comunicar y/o poner a disposición, fragmentos de obras impresas o susceptibles de estar en formato analógico o digital, ya sea en soporte papel o electrónico. Ley 23/2006, de 7 de julio, por la que se modifica el texto revisado de la Ley de Propiedad Intelectual, aprobado

DSpace software copyright © 2002-2026

Licencia