Ciencias Exactas y Ciencias de la Salud
Permanent URI for this collectionhttps://hdl.handle.net/11285/551039
Pertenecen a esta colección Tesis y Trabajos de grado de las Maestrías correspondientes a las Escuelas de Ingeniería y Ciencias así como a Medicina y Ciencias de la Salud.
Browse
Search Results
- Analyzing VR and AR I4.0 technologies for industrial applications: A comparative study and selection approach development(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2024-12-11) Chavez Najera, Daniela Monserrat; Ahuett Garza, Horacio; emipsanchez; Urbina Coronado, Pedro Daniel; Orta Castañón, Pedro Antonio; School of Engineering and Sciences; Campus MonterreyIn recent years, the implementation of immersive technologies such as Virtual Reality (VR) and Augmented Reality (AR) for Industry 4.0 (I4.0) applications has increased considerably. These technologies enable the connection of virtual and real environments focusing on human centered manufacturing. A challenge when implementing immersive technologies in industrial tasks is the lack of clear paths to select the most appropriate technology for specific operations, and the nonexistence of metrics to evaluate the integration performance. Nonetheless, there are trends in the literature that offer insights to conduct the decision making process for selection between immersive technologies, ensuring the suitability of the application. Based on the decision criteria identified in the literature a decision making approach is developed. This thesis also presents the development workflow of three VR/AR applications implemented in Unity Engine for Meta Quest 3 and Hololens 2. These applications are evaluated using overall performance metrics and are analyzed using the proposed approach.
- Emotion recognition based on physiological signals for Virtual Reality applications(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2022-06-13) Oceguera Cuevas, Daniela; FUENTES AGUILAR, RITA QUETZIQUEL; 229297; Fuentes Aguilar, Rita Quetziquel; puemcuervo; Antelis Ortíz, Javier Mauricio; Fernández Cervantes, Victor; School of Engineering and Sciences; Campus Monterrey; Hernández Melgarejo, GustavoVirtual Reality (VR) Systems have been used in the last years with an increasing frequency because they can be implemented for multiple applications in various fields. Some of these include aerospace, military, psychology, education, and entertainment. A way to increase the sense of presence is to induce emotions through the VE, and since one of the main purposes of VR Systems is to evoke the same emotions as a real experience would, the induction of emotions and emotion recognition could be used to enhance the experience. The emotion of a user can be recognized through the analysis and processing of physiological signals such as Electrocardiogram (ECG) and Electrodermal Activity (EDA) signals. However, very few systems that present online feedback regarding the subject’s emotional state and the possibility of adapting the VE during user experience have been developed. This thesis proposes the development of a Virtual Reality video game that can be dynamically modified according to the physiological signals of a user to regulate his emotional state. The first experiment served for the creation of a database. Previous studies have shown that specific features from these signals, can be used to develop algorithms capable of classifying the emotional states of the subjects into multiple classes or the two emotional dimensions: valence and arousal. Thus, this experiment helped to develop an appropriate Virtual Reality video game for stress induction, a signal acquisition, and conditioning system, a signal processing model and to extract time-domain signal features offline. A statistical analysis was performed to find significant differences between game stages and machine learning algorithms were trained and tested to perform classification offline. A second experiment was performed for the Proof of Concept Validation. For this, a model was created to extract features online and the classification algorithms were re-fitted with the online extracted features. Additionally, to facilitate a completely online process, the signal processing and feature extraction models were embedded on an STM32F446 Nucleo board, a strategy was implemented to dynamically modify the VE of the Virtual Reality video game according to the detected class, and the complete system was tested.
- Virtual Reality environment for the analysis of preoperative studies through a 3D volumetric visualization(Instituto Tecnológico y de Estudios Superiores de Monterrey, 2021-06-14) Cruz Díaz, Sirenia Guadalupe; Cortés Ramírez, Jorge Armando; tolmquevedo; Jiménez Vielma, Julio Fernando; Presbítero Espinosa, Gerardo; School of Engineering and Sciences; Campus MonterreyIt is rare to interpret Computed Tomography (CT) images in a different way than the traditional approach since the technology exists to do it faster and better, the requisite equipment and software are expensive, and not all hospitals can afford them. The following work presents a virtual reality environment for the analysis of preoperative studies through a 3D volumetric visualization, using open-source software to contribute to the optimal visualization of Computed Tomography (CT) scans, in order to promote a quick and efficient interpretation.